SCIENTIFIC PUBLICATIONS AND PRESENTATIONS
RELATING TO PLANETARY QUARANTINE

Volume V
The 1969 Supplement

September 1970

BIOLOGICAL SCIENCES COMMUNICATION PROJECT
THE GEORGE WASHINGTON UNIVERSITY MEDICAL CENTER
2001 S STREET, N.W., WASHINGTON, D.C. 20009
Telephone (202) 462-5828
SCIENTIFIC PUBLICATIONS AND PRESENTATIONS RELATING TO PLANETARY QUARANTINE

BIOSCIENCE PROGRAMS
OFFICE OF SPACE SCIENCE AND APPLICATIONS
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Volume V
The 1969 Supplement

by

Frank D. Bradley, B.A., M.A.
Sandra G. Moritsugu, B.S.

C.W. Shilling, M.D., Director
Biological Sciences Communication Project
The Medical Center
THE GEORGE WASHINGTON UNIVERSITY
Washington, D.C.

Work Performed under NASA Contract
NSR-09-010-027

September 1970
PREFACE

This bibliography lists publications of the NASA Planetary Quarantine Program under funded contracts and grants issued during the calendar year of 1969. The compilation follows the policy established for the previous issue by including certain non-NASA funded, but Planetary Quarantine oriented items.

The bibliography is designated The 1969 Supplement, which corrects a technical inaccuracy of past years where each annual publication was designated as an edition. The 19 November 1968 and November 1969 "editions" are in fact supplements to the basic document of 26 June 1967.
FOREWORD

Many of the documents cited in this supplement are augmented by the distributing facility designation number which is enclosed by brackets. This is done to aid the user of the supplement in obtaining a hard copy or microfiche of the referenced item. The cross hatch symbol, #, used in conjunction with the accession number indicates the item is available in microfiche as well as in hard copy.

Items with numerals preceded by only the letter "A" may be procured from the

Technical Information Service
American Institute of Aeronautics and Astronautics, Inc.
750 Third Avenue
New York, N.Y. 10017

References preceded by the letter "X" are usually limited in their distribution to NASA associated personnel. All other items are obtainable from the

Clearinghouse for Federal and Scientific Information (CFSTI)
U.S. Department of Commerce
5285 Port Royal Road
Springfield, Va. 22151

NASA contractors, grantees, and consultants may obtain many of the documents through their librarians from the

NASA Scientific and Technical Information Facility
P.O. Box 33
College Park, Md. 20740

-v-
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>iii</td>
</tr>
<tr>
<td>Foreword</td>
<td>v</td>
</tr>
<tr>
<td>List of Citations</td>
<td>1</td>
</tr>
<tr>
<td>Author Index</td>
<td>45</td>
</tr>
<tr>
<td>Permutated Title Index</td>
<td>50</td>
</tr>
<tr>
<td>Journals Publishing</td>
<td></td>
</tr>
<tr>
<td>Planetary Quarantine</td>
<td></td>
</tr>
<tr>
<td>Oriented Articles</td>
<td>100</td>
</tr>
<tr>
<td>Proceedings Publishing</td>
<td></td>
</tr>
<tr>
<td>Planetary Quarantine</td>
<td></td>
</tr>
<tr>
<td>Oriented Articles</td>
<td>101</td>
</tr>
</tbody>
</table>
SCIENTIFIC PUBLICATIONS AND PRESENTATIONS
RELATING TO PLANETARY QUARANTINE

1968

 Also published in Mathematical Biosciences 2(1/2):165-179, February 1968.

[A69-22358 #]

[A68-28673 #]

[N68-34928 #]

[N69-13084 #]

[N68-23404 #]

-6-

[A70-14131 #]

[N69-35432 #]

[N69-24759 #]

[N69-21223 #]

87. Brannen, J.P. Some Applications of Biophysics to Spacecraft Sterilization. Presented at the University of New Mexico, Department of Physics and Astronomy, 31 October 1969.

-14-

[N69-35935 #]

[N69-35935 #]

[N70-25226 #]

[N70-15403 #]

[N70-12193 #]

-35-

283. Sivinski, H.D. Contamination Control: Serendipity or a Discipline. Presented at the American Association for Contamination Control, 8th Annual Technical Meeting and Exhibit, New York, 19-22 May 1969.

[A70-16703]

[A70-11080]

<table>
<thead>
<tr>
<th>Author</th>
<th>Page(s)</th>
<th>Author</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akers, R.L.</td>
<td>55</td>
<td>Caplan, H.</td>
<td>98</td>
</tr>
<tr>
<td>Aldridge, C.</td>
<td>56</td>
<td>Carroll, P.C.</td>
<td>99</td>
</tr>
<tr>
<td>Alexander, M.</td>
<td>57,57a</td>
<td>Casey, E.F.</td>
<td>100</td>
</tr>
<tr>
<td>Austin, P.R.</td>
<td>58,59</td>
<td>Chang, G.K.</td>
<td>101</td>
</tr>
<tr>
<td>Aveco Corp., Lowell</td>
<td>1,60,61,62,63</td>
<td>Chappelle, E.W.</td>
<td>197</td>
</tr>
<tr>
<td>Massachusetts</td>
<td></td>
<td>Charles, R.G.</td>
<td>271</td>
</tr>
<tr>
<td>Barbeito, M.S.</td>
<td>2,3,301</td>
<td>Chiang, K-C.</td>
<td>103</td>
</tr>
<tr>
<td>Barger, A.R.</td>
<td>64</td>
<td>Cheater, D.J.</td>
<td>102</td>
</tr>
<tr>
<td>Barrett, M.J.</td>
<td>65</td>
<td>Chichester, C.O.</td>
<td>104</td>
</tr>
<tr>
<td>Bauman, A.J.</td>
<td>162</td>
<td>Chreitzberg, A.M.</td>
<td>71</td>
</tr>
<tr>
<td>Bateman, J.B.</td>
<td>4,288,289</td>
<td>Christensen, E.A.</td>
<td>9,105</td>
</tr>
<tr>
<td>Beakley, J.W.</td>
<td>66,293,336</td>
<td>Christensen, M.R.</td>
<td>106,140,156</td>
</tr>
<tr>
<td>Beauchamp, J.J.</td>
<td>67</td>
<td>Cliver, D.O.</td>
<td>107</td>
</tr>
<tr>
<td>Beck, A.J.</td>
<td>68</td>
<td>Cole, J.E.</td>
<td>64,108</td>
</tr>
<tr>
<td>Belikova, Ye.V.</td>
<td>69</td>
<td>Colson, S.R.</td>
<td>109</td>
</tr>
<tr>
<td>Bement, L.J.</td>
<td>70</td>
<td>Conrow, H.P.</td>
<td>94,96</td>
</tr>
<tr>
<td>Berman, B.</td>
<td>219</td>
<td>Consultants and</td>
<td></td>
</tr>
<tr>
<td>Berry, J.H.</td>
<td>64</td>
<td>Designers, Inc.</td>
<td></td>
</tr>
<tr>
<td>Bodamer, G.W.</td>
<td>71</td>
<td>Cooper, C.J.</td>
<td>111</td>
</tr>
<tr>
<td>Bollen, W.B.</td>
<td>72,73</td>
<td>Cornell, R.G.</td>
<td>67,112,113,114,230,294</td>
</tr>
<tr>
<td>Bond, R.G.</td>
<td>74</td>
<td>Craven, C.W.</td>
<td>10</td>
</tr>
<tr>
<td>Bond, W.W.</td>
<td>75,76,229</td>
<td>Crawford, A.M.</td>
<td>197</td>
</tr>
<tr>
<td>Boyd, J.W.</td>
<td>77</td>
<td>Crawford, J.G.</td>
<td>115</td>
</tr>
<tr>
<td>Bradley, F.D.</td>
<td>78</td>
<td>Crawford, R.L.</td>
<td>235,236,290</td>
</tr>
<tr>
<td>Brady, H.F.</td>
<td>79,80,81,82,83,84</td>
<td>Dahlgren, C.M.</td>
<td>116</td>
</tr>
<tr>
<td>Brannen, J.P.</td>
<td>5,85,86,87</td>
<td>Davies, M.E.</td>
<td>185</td>
</tr>
<tr>
<td>Bremer, J.M.</td>
<td>88</td>
<td>Davis, N.S.</td>
<td>204</td>
</tr>
<tr>
<td>Brewer, J.H.</td>
<td>6</td>
<td>Decker, H.M.</td>
<td>116</td>
</tr>
<tr>
<td>Brierley, J.A.</td>
<td>89,90</td>
<td>deWys, E.C.</td>
<td>68</td>
</tr>
<tr>
<td>Brown, O.R.</td>
<td>7</td>
<td>Dineen, P.</td>
<td>11</td>
</tr>
<tr>
<td>Buchanan, L.M.</td>
<td>116</td>
<td>Dixon, G.D.</td>
<td>271</td>
</tr>
<tr>
<td>Bücher, H.</td>
<td>91</td>
<td>Dobley, W., Jr.</td>
<td>92</td>
</tr>
<tr>
<td>Bueker, R.</td>
<td>8</td>
<td>Douglas, J.</td>
<td>12</td>
</tr>
<tr>
<td>Burlingame, A.L.</td>
<td>282</td>
<td>Doyle, J.E.</td>
<td>13,117</td>
</tr>
<tr>
<td>Bursey, C.H., Jr.</td>
<td>92</td>
<td>Drummond, D.W.</td>
<td>118</td>
</tr>
<tr>
<td>Bychenkova, V.N.</td>
<td>191</td>
<td>Duffee, R.A.</td>
<td>14</td>
</tr>
<tr>
<td>Cada, R.L.</td>
<td>77</td>
<td>Dugan, J.W.</td>
<td>336</td>
</tr>
<tr>
<td>Cameron, R.E.</td>
<td>93,94,95,96,162</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Campbell, R.W.</td>
<td>97</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

-45-
<table>
<thead>
<tr>
<th>Name</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eagle-Picher Co.,</td>
<td></td>
</tr>
<tr>
<td>Joplin, Mo.</td>
<td>119</td>
</tr>
<tr>
<td>Ehrenfeld, E.</td>
<td>29</td>
</tr>
<tr>
<td>Emborg, C.</td>
<td>105</td>
</tr>
<tr>
<td>Enlow, D.L.</td>
<td>15</td>
</tr>
<tr>
<td>Ernst, R.R.</td>
<td>13,16</td>
</tr>
<tr>
<td>Ervin, G.F.</td>
<td>17,120,140</td>
</tr>
<tr>
<td>Eshleman, V.R.</td>
<td>121</td>
</tr>
<tr>
<td>Exotech, Inc., Washington, D.C.</td>
<td>122,123,124,125</td>
</tr>
<tr>
<td>Favero, M.S.</td>
<td>75,76,127,128,129,130</td>
</tr>
<tr>
<td>Farmer, F.H.</td>
<td>126</td>
</tr>
<tr>
<td>Fewell, R.O.</td>
<td>18</td>
</tr>
<tr>
<td>Fields, N.D.</td>
<td>224</td>
</tr>
<tr>
<td>Filler, M.E.</td>
<td>116,151</td>
</tr>
<tr>
<td>Flory, D.A.</td>
<td>282</td>
</tr>
<tr>
<td>Forster, R.E.</td>
<td>131</td>
</tr>
<tr>
<td>Fox, D.G.</td>
<td>132</td>
</tr>
<tr>
<td>Frank, R.E.</td>
<td>66,99</td>
</tr>
<tr>
<td>Freundlich, M.M.</td>
<td>133</td>
</tr>
<tr>
<td>Frisque, D.E.</td>
<td>116</td>
</tr>
<tr>
<td>Gammon, R.A.</td>
<td>179</td>
</tr>
<tr>
<td>Garst, D.M.</td>
<td>54,134,135,188</td>
</tr>
<tr>
<td>Gavin, T.R.</td>
<td>136</td>
</tr>
<tr>
<td>Gehrke-Manning, J.E.</td>
<td>137</td>
</tr>
<tr>
<td>Geiger, P.J.</td>
<td>162</td>
</tr>
<tr>
<td>Gelvin, D.E.</td>
<td>204</td>
</tr>
<tr>
<td>Gelvin, D.R.</td>
<td>222</td>
</tr>
<tr>
<td>George C. Marshall</td>
<td></td>
</tr>
<tr>
<td>Space Flight Center</td>
<td>138</td>
</tr>
<tr>
<td>Godwin, W.W.</td>
<td>139</td>
</tr>
<tr>
<td>Gondusky, J.M.</td>
<td>235,236</td>
</tr>
<tr>
<td>Gould, G.W.</td>
<td>19</td>
</tr>
<tr>
<td>Graves, R.C.</td>
<td>240,241</td>
</tr>
<tr>
<td>Green, R.H.</td>
<td>140,280</td>
</tr>
<tr>
<td>Gremillion, G.G.</td>
<td>301</td>
</tr>
<tr>
<td>Grigor’yev, Yu.G.</td>
<td>141</td>
</tr>
<tr>
<td>Guenther, M.E.</td>
<td>142</td>
</tr>
<tr>
<td>Gunther, D.A.</td>
<td>143</td>
</tr>
<tr>
<td>Hagen, C.A.</td>
<td>144,145</td>
</tr>
<tr>
<td>Halbert, M.M.</td>
<td>322</td>
</tr>
<tr>
<td>Hall, C.W.</td>
<td>21</td>
</tr>
<tr>
<td>Hall, L.B.</td>
<td>272,297</td>
</tr>
<tr>
<td>Hand, P.J.</td>
<td>146,147,148,149,150</td>
</tr>
<tr>
<td>Hane, W.F.</td>
<td>64</td>
</tr>
<tr>
<td>Hansen, F.V.</td>
<td>20</td>
</tr>
<tr>
<td>Harris, D.R.</td>
<td>317</td>
</tr>
<tr>
<td>Harstad, J.B.</td>
<td>151</td>
</tr>
<tr>
<td>Hartel, B.</td>
<td>152,153,154</td>
</tr>
<tr>
<td>Hedrick, T.I.</td>
<td>21</td>
</tr>
<tr>
<td>Heldman, D.R.</td>
<td>21</td>
</tr>
<tr>
<td>Hemenway, C.L.</td>
<td>190</td>
</tr>
<tr>
<td>Herriman, A.G.</td>
<td>185</td>
</tr>
<tr>
<td>Hindley, K.</td>
<td>155</td>
</tr>
<tr>
<td>Hoffman, A.R.</td>
<td>140,156,225,300</td>
</tr>
<tr>
<td>Hoffman, R.K.</td>
<td>157,158,159,160,238</td>
</tr>
<tr>
<td>Hogon, J.S.</td>
<td>161</td>
</tr>
<tr>
<td>Holm, N.W.</td>
<td>9,105</td>
</tr>
<tr>
<td>Homsey, R.J.</td>
<td>102</td>
</tr>
<tr>
<td>Hornack, G.</td>
<td>91</td>
</tr>
<tr>
<td>Horowitz, N.M.</td>
<td>162,185</td>
</tr>
<tr>
<td>Howell, R.D.</td>
<td>163</td>
</tr>
<tr>
<td>Howerton, M.T.</td>
<td>164</td>
</tr>
<tr>
<td>Howerton, T.</td>
<td>22</td>
</tr>
<tr>
<td>Huang, R.</td>
<td>295</td>
</tr>
<tr>
<td>Hubbard, J.S.</td>
<td>162,165</td>
</tr>
<tr>
<td>Hueschen, R.M.</td>
<td>126</td>
</tr>
<tr>
<td>Huggett, D.O.</td>
<td>7</td>
</tr>
<tr>
<td>Hughes, L.W.</td>
<td>336</td>
</tr>
<tr>
<td>Imshenetskii, A.</td>
<td>23,24,166</td>
</tr>
<tr>
<td>Irons, A.S.</td>
<td>140,167</td>
</tr>
<tr>
<td>Isenberg, H.D.</td>
<td>168</td>
</tr>
<tr>
<td>Iverson, W.P.</td>
<td>25</td>
</tr>
<tr>
<td>James, A.N., Jr.</td>
<td>169</td>
</tr>
<tr>
<td>Jet Propulsion Laboratory</td>
<td></td>
</tr>
<tr>
<td>Pasadena</td>
<td>170,171,172,173,174</td>
</tr>
<tr>
<td>Jones, A.</td>
<td>19</td>
</tr>
<tr>
<td>Jurevic, W.G.</td>
<td>253</td>
</tr>
<tr>
<td>Ju, F.</td>
<td>204</td>
</tr>
<tr>
<td>Kalfayan, S.H.</td>
<td>175</td>
</tr>
<tr>
<td>Kaplan, A.</td>
<td>176</td>
</tr>
<tr>
<td>Karpinski, J.Z.</td>
<td>26</td>
</tr>
<tr>
<td>Karpukhin, G.I.</td>
<td>27,177</td>
</tr>
<tr>
<td>Kemp, H.T.</td>
<td>14</td>
</tr>
</tbody>
</table>
Kemper, K.M. 72
Keough, J.B. 28
Kereluk, K. 178,179
Kline, R.C. 180,272
Koch, A.L. 29
Kohlhase, C.E. 30
Komolova, G.S. 69
Kopelman, I.J. 31
Kosmo, J.J. 181
Koznova, L.B. 228
Krushchev, V.G. 228
Kubasko, P.E. 15

Langer, A. 271
Lassegard, W.E. 182
LeDoux, F.N. 32
Lee, S.M. 18,183,184
Leighton, R.B. 185
Leovy, C.B. 185
Levin, G.V. 33,186
Levin, V.L. 34
Levitan, A.A. 324
Libby, W.F. 35,36
Lilja, H.S. 308
Lindell, K.F. 187,188,332
Liubarski, K.A. 189
Lloyd, R.S. 178,179
Long, M.E. 102
Lorenz, P.R. 190
Lozina-Lozinskii, L.K. 37,38,191
Lukens, S.C. 39,192,193,194
Lutwack, R. 195,196

MacLeod, N.H. 197,252
Marov, M.Ya. 198
Marr, A.G. 46
Marshall, J.H. 75,76
Martin Co., Denver 201
Martin, K. 199,200
Martin Marietta Corp., Denver 202
Marx, H.J. 203
Mason, H.P. 223
Mason, J.W. 204,222
Mauri, R.E. 205
Maxwell, W.A. 104
McDade, J.J. 55,206,336

McDonald, J.P. 40
McDonnell Astronautics Co., St. Louis, Mo. 41
McElhill, E.A. 45
McKinney, R. 40
McLaren, A.D. 50
Meadows, A.J. 42
Mehrotr, W.H. 13
Mellin, J.R. 64
Michaelsen, G.S. 322,324
Miller, C.G. 207
Mitz, M.A. 208
Moats, W.A. 209
Moritsugu, S.G. 78
Morris, M.E. 334,336
Morrison, S.M. 77
Mortimer, A.R. 48
Mueller, R.F. 210
Mukherji, S. 9
Murray, B.C. 185

National Academy of Sciences, National Research Council
Washington, D.C. 44
National Academy of Science, Space Science Board, Washington, D.C. 43
National Aeronautics and Space Administration, Washington, D.C. 211,212,213,214
National Communicable Disease Center, Atlanta 215,216,217,218

Neill, A.H. 219,220
Nelson, B.A. 221
Nishikawa, S. 73

O'Connell, J.J. 45
Olson, C.A. 45
Opfell, J.B. 204,222
Orlob, G.B. 190
Owen, T. 223
Oxborrow, G.S. 224,240,241
<table>
<thead>
<tr>
<th>Name</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Updike, S.J.</td>
<td>317</td>
</tr>
<tr>
<td>Useller, J.W.</td>
<td>318</td>
</tr>
<tr>
<td>Ushakov, A.S.</td>
<td>141</td>
</tr>
<tr>
<td>Ussery, Q.T.</td>
<td>319</td>
</tr>
<tr>
<td>Vandrey, J.F.</td>
<td>320</td>
</tr>
<tr>
<td>Vashkov, V.I.</td>
<td>321</td>
</tr>
<tr>
<td>Vereen, L.E.</td>
<td>77</td>
</tr>
<tr>
<td>Vershigora, A.Yu.</td>
<td>52</td>
</tr>
<tr>
<td>Vesley, D.</td>
<td>322, 323, 324</td>
</tr>
<tr>
<td>Viking Project Management</td>
<td>325</td>
</tr>
<tr>
<td>Vishniac, W.</td>
<td>326</td>
</tr>
<tr>
<td>Vlodavets, V.V.</td>
<td>53</td>
</tr>
<tr>
<td>von Hartmann, W.</td>
<td>195, 327, 328</td>
</tr>
<tr>
<td>Walker, R.J.</td>
<td>55</td>
</tr>
<tr>
<td>Wang, J.T.</td>
<td>156</td>
</tr>
<tr>
<td>Wardel, M.D.</td>
<td>298, 300</td>
</tr>
<tr>
<td>Weneck, E.J.</td>
<td>288, 289</td>
</tr>
<tr>
<td>West, W.S.</td>
<td>329</td>
</tr>
<tr>
<td>Westberg, K.</td>
<td>162</td>
</tr>
<tr>
<td>Weston, C.R.</td>
<td>338</td>
</tr>
<tr>
<td>Whitfield, W.J.</td>
<td>54, 188, 206, 330, 331, 332, 333, 334, 335, 336</td>
</tr>
<tr>
<td>Willard, M.T.</td>
<td>8</td>
</tr>
<tr>
<td>Williamsen, C.T.</td>
<td>337</td>
</tr>
<tr>
<td>Wrighton, C.</td>
<td>19</td>
</tr>
<tr>
<td>Yang, J.N.</td>
<td>338</td>
</tr>
<tr>
<td>Yegorov, I.A.</td>
<td>69</td>
</tr>
<tr>
<td>Yoshida, T.</td>
<td>77</td>
</tr>
<tr>
<td>Young, A.T.</td>
<td>185</td>
</tr>
<tr>
<td>Youngblood, H.H.</td>
<td>339, 340</td>
</tr>
<tr>
<td>Topic</td>
<td>Details</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>ABSORPTION-DESORPTION</td>
<td>of water by bacterial spores and its relation to dry heat re</td>
</tr>
<tr>
<td>ACCELEROMETERS</td>
<td>Development of a sterilizable performance</td>
</tr>
<tr>
<td></td>
<td>Investigation of sterilizable high performance</td>
</tr>
<tr>
<td></td>
<td>Sterilizable inertial sensor high performance</td>
</tr>
<tr>
<td>ADENOSINE TRIPHOSPHATE</td>
<td>assay of terrestrial soils—a test of an exobiological experi</td>
</tr>
<tr>
<td></td>
<td>Automated microbial metabolism laboratory/</td>
</tr>
<tr>
<td></td>
<td>Bacterial contamination monitor, patent application/</td>
</tr>
<tr>
<td>ADHESIVES</td>
<td>Adhesives/</td>
</tr>
<tr>
<td>AEROSOLS(S)</td>
<td>and bacterial aerosols/Evaluation of air filters with submic</td>
</tr>
<tr>
<td></td>
<td>Contamination control handbook/</td>
</tr>
<tr>
<td></td>
<td>Design requirements for laminar airflow clean rooms and devi</td>
</tr>
<tr>
<td></td>
<td>in a microbiological safety cabinet/Containment of microbial</td>
</tr>
<tr>
<td></td>
<td>in the dust phase/Experimental model of a bacterial</td>
</tr>
<tr>
<td></td>
<td>Life in extraterrestrial environments/</td>
</tr>
<tr>
<td></td>
<td>Life in extraterrestrial environments/</td>
</tr>
<tr>
<td></td>
<td>method of disinfection in viral infections. I. Technique of</td>
</tr>
<tr>
<td></td>
<td>microbiological evaluation of the vacuum probe surface samp</td>
</tr>
<tr>
<td></td>
<td>Microorganisms removed from contaminated stainless steel by</td>
</tr>
<tr>
<td></td>
<td>of viable particles of different sizes/Production of</td>
</tr>
<tr>
<td></td>
<td>physics studies/Fine particle and</td>
</tr>
<tr>
<td></td>
<td>Planetary quarantine program/</td>
</tr>
<tr>
<td></td>
<td>Principles and applications of laminar-flow devices/</td>
</tr>
<tr>
<td></td>
<td>Reduction of microbial dissemination/ 13th SRP</td>
</tr>
<tr>
<td></td>
<td>Reduction of microbial dissemination germicidal activity of</td>
</tr>
<tr>
<td></td>
<td>stabilizers as substitutes for bound water: a study of an</td>
</tr>
<tr>
<td></td>
<td>stabilizers as substitutes for bound water: an in vitro mode</td>
</tr>
<tr>
<td></td>
<td>Study of aseptic maintenance by pressurization/</td>
</tr>
<tr>
<td></td>
<td>Study of the application of laminar flow ventilation to oper</td>
</tr>
<tr>
<td>AEROSPACE ACTIVITIES</td>
<td>1966-2066/Law for</td>
</tr>
<tr>
<td>AIR</td>
<td>filters with submicron viral aerosols and bacterial aerosols</td>
</tr>
<tr>
<td></td>
<td>incinerator/Microbiological evaluation of a large volume</td>
</tr>
<tr>
<td></td>
<td>sampling/Advances in large-volume</td>
</tr>
<tr>
<td></td>
<td>(sampling) Effectiveness of laminar air flow for controlling</td>
</tr>
<tr>
<td>AIRBORNE CONTAMINATION</td>
<td>Effectiveness of laminar air flow for controlling</td>
</tr>
<tr>
<td>ALCOHOL</td>
<td>sporulation method/Evaluation of</td>
</tr>
<tr>
<td>AMBIENT WATER ACTIVITY</td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>use of membrane filter support for test organisms/Long-term analysis</td>
<td>4</td>
</tr>
</tbody>
</table>

Abundance of microflora in soils of desert regions/ Antarctic dry valley soil microbial incubation and gas composition

Apollo lunar module engine exhaust products/	94
Atmospheres of Mars and Venus/The	93
Biostatistics and space exploration: microbiology and sterilization	91

<table>
<thead>
<tr>
<th>Antarctic</th>
<th>Apollo</th>
</tr>
</thead>
<tbody>
<tr>
<td>dry valley soil microbial incubation and gas composition/</td>
<td>94</td>
</tr>
<tr>
<td>organic analysis/Sterile soil from</td>
<td>162</td>
</tr>
</tbody>
</table>

Microbiological profiles Apollo 7, 8, and 9 spacecraft/	240
Microbiology studies/	165
RTG radiation test laboratory/	97
Mathematical model of the effect of a predator on species distribution	155
Method for determining virus on surfaces contaminated by viral contaminants	338
Microbiological evaluation of the vacuum probe surface sampler	177
Microbiological profiles Apollo 7, 8, and 9 spacecraft/	229
Microbiology studies/	240
Microbiology studies/	165
Planetary quarantine	280
Services provided in support of the planetary quarantine request	97
Services provided in support of the planetary quarantine request	129
Severe planetary environments and their implications on technology	130
Severe planetary environments and their implications on technology	231
Space programs summary no. 37-55, vol. 3/	125
Spacecraft component survivability during entry into the Martian scene	172
Spearman simultaneous estimation for a compartmental model/	296
Stability of viruses in foods for spaceflights/	67
Sterile soil from Antarctica: organic	107
Sterilization/	162
Sterilization and thermal-vacuum effects on spacecraft polymer	117
Study of the thermal kill of viable organisms during Mars landing	259
Technology feasibility spacecraft thermal math modeling term	92
Unmanned spacecraft RTG shield optimization study/	164
Unmanned spacecraft RTG shield optimization study/	295
APOLLO (continued)
9 spacecraft/Microbial contamination detected on the
10 Ecology and thermal inactivation of microbes in and on in
10 Services provided in support of the planetary quarantine
10 Services provided in support of the planetary quarantine
10 and 11 spacecraft/Qualitative microbiological studies on
11 Ecology and thermal inactivation of microbes in and on in
11: Preliminary science report/
11 Services provided in support of the planetary quarantine
11 Services provided in support of the planetary quarantine
and contamination control Boeing's role/
and contamination control Grumman aircraft's role
and contamination control McDonnell Douglas's role/
and contamination control NASA's role/
and contamination control-Rocketdyne's role/
landing/Lunar atmospheric contamination due to an
lunar module engine exhaust products/
model for the quantification of the qualitative microbial sa
modules/The determination of quantitative microbial requirem
Planetary quarantine program/
Services provided in support of the planetary quarantine req
ASEPTIC MAINTENANCE
by pressurization/A study of
ASSAY
Contamination control training course outline/
effect of dimethyl sulfoxide on the sporidical activity of
Effect of relative humidity on survival of Bacillus subtilis
Methyl bromide as an aid to ethylene oxide sterilization/
Microbial contamination detected on the Apollo 9 spacecraft
Paraformaldehyde for surface sterilization and detoxificatio
Procedures for the microbiological examination of space hard
Quality assurance monitoring of the microbiological aspects
Reduction of microbial dissemination germicidal activity of
Release of microbial contamination from fractured solids/
study of aseptic maintenance by pressurization/
Vacuum probe: new approach to the microbiological sampling
buried biological contamination/An analytical basis for
ASSEMBLE - ASSEMBLY
Apollo and contamination control NASA's role/
areas/Dry heat inactivation kinetics of naturally occurring
Capsule system advanced development sterilization program/
Class 100 clean room program, preparation and initial operat
Dry heat destruction rates for microorganisms on open surfac
Experimental heat chamber for sterilization of large interpl
Experimental heat chamber for sterilization of large interpl
Experimental heat chamber for sterilization of large interpl
facility operations/Microbiological monitoring of spacecraft
Heat sterilizable and impact resistant Ni-Cd battery develop
Heat sterilizable and impact resistant Ni-Cd battery develop
in the sterilization assembly development laboratory/Biologi
Life in extraterrestrial environments/
ASSEMBLE - ASSEMBLY (continued)
Manufacturing aspects of technology feasibility spacecrafts 40
Mathematical models for contamination and pollution prediction 221
Microbial contamination detected on the Apollo 9 spacecraft 241
Planetary quarantine progress 219
Quality assurance monitoring of the microbiological aspects 136
Quality assurance requirements manual for planetary spacecrafts 138
Spacecraft sterilization training manual 242
Sterilizable liquid propulsion system, Part 2 final report 192
Sterilizable wide angle gas bearing gyro FGG3345 88
Sterilization and decontamination I 183
Sterilization and decontamination II 184
Stochastic math model 281
Vacuum probe: new approach to the microbiological sampling 336

ATMOSPHERE(S)
1973 Viking voyage to Mars 325
Apollo lunar module engine exhaust products 282
ATP assay of terrestrial soils-a test of an exobiological experiment 197
Comparative evaluation of methods for the search for life on Mars and Venus 166
Designing for the laminar flow environment 332
Effect of a simulated Martian environment on certain enzymes 69
Ethylene oxide sterilization, a current review of principles 178
Exospheric temperatures on Mars and Venus 161
Experimental heat chamber for sterilization of large interplanetary vehicles 79
Experimental heat chamber for sterilization of large interplanetary vehicles 80
Investigations into a diffusion model of dry heat sterilization 65
Mariner-Mars 1969 a preliminary report 212
Mars-water vapor in its environment 223
Martian scene 155
Microbiological methods of testing the presence of life on Mars and Venus 52
Origin of microbial life on earth and its implications for future space exploration 121
(preliminary screening) Sterilizable polymeric materials 168
Resistance of the protozoon colpoda maupasi to Martian conditions 175
Spacecraft sterilization by destructive heating 297
Television observations from Mariner 6 and 7 185

ATMOSPHERIC contaminants by consideration of turbulent characteristics 20
contaminants in spacecraft 43
contamination due to an Apollo landing/Lunar entry 101
A study of the thermal kill of viable organisms during flight 92
(models) Buoyant Venus station mission feasibility for 1972 64

ATP SEE ADENOSINE TRIPHOSPHATE

AUTOMATED microbial metabolism laboratory 186

AVIONICS clean room 111

Av. on the sporicidal activity of ethylene oxide/The effects of 179
BALL BEARING GYROSCOPE
motor sterilization program/C702543 Alpha III

BATTERY
development/Heat sterilizable 195
development/Heat sterilizable 196
development/Heat sterilizable and impact resistant Ni-Cd 235
development/Heat sterilizable and impact resistant Ni-Cd 236
development/Heat sterilizable and impact resistant Ni-Cd 237
development/Heat sterilizable Ni-Cd 290
Separator development for a heat sterilizable 271
separators/The application of bench tests in the development 327
separators/The application of bench tests in the development 328

BACK CONTAMINATION
Possible contamination of earth by lunar or Martian life/ 57a

BACTERIA
and viruses in liquids/The detection of 208
by light scattering measurements/The size and shape of 29
(colony count) New fast techniques for bioassay/ 48
Ethylene oxide sterilization, a current review of principles 178
Germicidal activity of ethylene oxide/ 14th SRP 218
Influence of the dose rate and time factor on the bactericid 228
Life in extraterrestrial environments/ 144
Mathematical model of the effect of a predator on species di 338
Natural selection of microorganisms in extreme environments/ 57
Planetary quarantine program/ 269
Systematic description and key to isolants from Chile-Ataca 72

BACTERIAL
aerosol in the dust phase/Experimental model of a 53
(aerosols) Containment of microbial aerosols in a microbiol 2
Aerosols/Evaluation of air filters with submicron viral aero 151
(aerosols) Long-term bactericidal effects of reduced ambient 4
(aerosols) Microbiological evaluation of a large volume air 3
(aerosols) Microbiological methods of testing the atmosphere 52
contamination monitor, patent application/ 252
contamination of hard surfaces in the operating room/Control 11
inactivation/Kinetic model of 285
populations by means of factor profiles/Characterization of 51
response to the soil environment/ 77
spores and its relation to dry heat resistance/The absorbgio 260
spores as a spore control procedure/Limitations of the initi 19
spores from spacecraft assembly areas/Dry heat inactivation 76

BACTERICIDAL
effect of radiation/Influence of the dose rate and time fact 228
effects of reduced ambient water activity: use of membrane fi 4

BIBLIOGRAPHY
Scientific publications and presentations relating to planet 78

BIOASSAY
Bacterial contamination monitor, patent application/ 252
Class 100 clean room program, preparation and initial operat 41
Clean room facilities for Explorer 35 spacecraft 32
Contamination control and sterilization in space programs/ 220
BIOASSAY (continued)
Continuation of the development of a typical Mars landing ca 61
Continuation of the development of a typical Mars landing ca 62
Development of a laminar airflow biological cabinet/ 55
Effect of a simulated Martian environment on certain enzymes 69
Evaluation of new penetrating sporicide potentially useful i 56
Microbiology quality activities for a planetary mission/ 108
Natural selection of microorganisms in extreme environments/ 57
New fast techniques for 48
of spacecraft/Development of new and improved techniques for 339
Planetary quarantine and spacecraft sterilization/ 124
program/Manufacturing aspects of technology feasibility spac 40
Quality assurance requirements manual for planetary spacecra 138
Spacecraft sterilization/ 59
Sterilizable liquid propulsion system, Part 2 final report/ 192
(techniques) Possible contamination of earth by lunar or Mar 57a

BIOBARRIER
A study of the possible movement of microorganisms through 1

BIOBURDEN
Application of laminar flow rooms to patient isolation/ 324
Biostatistics and space exploration: microbiology and steril 112
Effect of air velocity on biocontamination in a laminar cros 322
in controlled environments/Predicting 304
Manufacturing aspects of technology feasibility spacecraft 40
Microbiological monitoring of spacecraft facility operations 106
Planetary quarantine program/ 266
Planetary quarantine program/ 268
Planetary quarantine progress/ 219
Stochastic math model/ 281

BIOCHEMICAL TECHNOLOGY
Experiments and instrumentation for extraterrestrial life 33

BIOCONTAMINATION
in a laminar crossflow room/Effect of air velocity on 322

BIOLOAD
Analytical basis for assaying buried biological contaminatio 180
Comments on the in-flight recontamination hazards/ 320
Immediate and future challenges to contamination control tec 120
Mathematical models for contamination and pollution predicti 221
Planetary quarantine program/ 267
Planetary quarantine program/ 269
Potential effects of recent findings on spacecraft steriliza 272
Procedures for the microbiological examination of space hard 127
Quality assurance monitoring of the microbiological aspects 136
Quality assurance requirements manual for planetary spacecra 138
Sterilization and decontamination techniques for space vehic 10
Study program on the development of mathematical model(s) fo 202

BIOLOGICAL
burden during spacecraft assembly/Effect of environment on 300
cabinet/Development of a laminar airflow 55
(contamination control) Interplanetary spacecraft decontamin 8
experimentation-methods and results/ 14
<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOLOGICAL</td>
<td>(continued)</td>
<td></td>
</tr>
<tr>
<td>indicators in sterilization/Proper use of isolation garment, patent application/monitoring of the capsule mechanical training model during</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>BIOMETRY</td>
<td>Spearman simultaneous estimation for a compartmental model/Some applications of spacecraft sterilization</td>
<td>67</td>
</tr>
<tr>
<td>BIOPHYSICS</td>
<td>to spacecraft sterilization/Some applications of and space exploration: microbiology and sterilization/and space exploration: microbiology and sterilization/</td>
<td>87</td>
</tr>
<tr>
<td>BIOSTATISTICS</td>
<td>Scientific publications and presentations relating to planet Sterilization requirements, operational procedures, faciliti</td>
<td>112</td>
</tr>
<tr>
<td>BIOTECHNOLOGY</td>
<td>An analytical basis for assaying Biostatistics and space exploration: microbiology and sterilization/Ecology and thermal inactivation of microbes in and on inter</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>Ecology and thermal inactivation of microbes in and on inter Evaluation of a quantal response model with variable concent Evaluation of new penetrating sporicide potentially useful</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td>Investigation of methods for the sterilization of potting co Microorganisms, alive and imprisoned in a polymer cage/Planetary quarantine program/</td>
<td>243</td>
</tr>
<tr>
<td></td>
<td>Potential effects of recent findings on spacecraff sterilization Release of microbial contamination from fractured solids/Spacecraft sterilization by destructive heating/</td>
<td>244</td>
</tr>
<tr>
<td>BURIED CONTAMINATION</td>
<td>Characterization of bacterial populations by means of factor profiles/</td>
<td>114</td>
</tr>
<tr>
<td>CARBON DIOXIDE</td>
<td>1973 Viking project management/Apollo lunar module engine exhaust products/chemical, biochemical, and physiological aspects/Exospheric temperatures on Mars and Venus/</td>
<td>56</td>
</tr>
<tr>
<td>CARBON MONOXIDE</td>
<td>Apollo lunar module engine exhaust products/</td>
<td>306</td>
</tr>
<tr>
<td>CELLULAR MORPHOLOGY</td>
<td>The size and shape of bacteria by light scattering measurement</td>
<td>268</td>
</tr>
<tr>
<td>CHARACTERIZATION</td>
<td>of bacterial populations by means of factor profiles/</td>
<td>272</td>
</tr>
<tr>
<td>CHEMICAL</td>
<td>1973 Viking voyage to Mars/Apollo lunar module engine exhaust products/Application of bench tests in the development of heat-steril</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>Application of bench tests in the development of heat-steril</td>
<td>297</td>
</tr>
</tbody>
</table>
CHEMICAL (continued)
contaminant inventory for lunar missions/Implementation of a Heat sterilizable battery development/ 123
Investigation of methods for the sterilization of potting co 196
Sterilization/ 307
CLASS 100 CLEAN ROOM PROGRAM
Preparation and initial operations/ 117
CLEAN ASSEMBLY
and sterilization laboratory/ 41
CLEAN ROOM(S)
and devices/Design requirements for laminar airflow 110
Apollo and contamination control Boeing's role/ 188
Apollo and contamination control-Rocketdyne's role/ 109
Avionics 100
Clean assembly and sterilization laboratory/ 111
Contamination control. A state-of-the-art review/ 54
Effect of environment on biological burden during spacecraft facilities for Explorer 35 spacecraft/ 32
HEPA:LAF environmental control at Riken laboratories/ 137
Mathematical models for contamination and pollution predicti 221
Monitoring for particle contamination on surfaces with the personnel/ 334
Planetary quarantine program/ 58
Planetary quarantine progress/ 268
Principles and applications of laminar-flow devices/ 219
program, preparation and initial operations/Class 100 206
Quality assurance monitoring of the microbiological aspects 41
Study of the application of laminar flow ventilation to oper techniques/Development of laminar flow technology/ 136
331
318
Traditional concepts for contamination control/ 234
Vacuum probe: new approach to the microbiological sampling vital element in contamination control/The 336
248
COMPARTMENTAL MODEL
Spearman simultaneous estimation for a 67
COMPATIBILITY
Effects of decontamination sterilization, and thermal vacuum 257
RTG radiation test laboratory/ 97
Sterilization and thermal-vacuum effects on spacecraft polym 259
COMPONENTS
Application of bench tests in the development of heat-steril 327
Application of bench tests in the development of heat sterilil 328
(assembly) Clean room facilities for Explorer 35 spacecraft/ 32 (assembly) Sterilization requirements, operational procedure 17
Clean assembly and sterilization laboratory/ 110
Clean room technology/ 318
Considerations for contamination control/ 203
Designing for the laminar flow environment/ 332
Development and application of a system model for spacecraft 122
Development of a sterilizable high-performance accelerometer 146
Development of high resolution, high stability sterilizable 26
COMPONENTS (continued)

Dry heat destruction rates for microorganisms on open surfac 232
Ecology and thermal inactivation of microbes in and on inter 243
Ecology and thermal inactivation of microbes in and on inter 244
Ecology and thermal inactivation of microbes in and on inter 245
Ecology and thermal inactivation of microbes in and on inter 246
Effect of environment on biological burden during spacecraft 300
Effects of decontamination sterilization, and thermal vacuum 257
Evaluation of new penetrating sporicide potentially useful 56
Experimental heat chamber for sterilization of large interpl 79
Experimental heat chamber for sterilization of large interpl 81
Experimental heat chamber for sterilization of large interpl 82
Experimental heat chamber for sterilization of large interpl 84
Experimental heat chamber for sterilization of large interpl 152
Experimental heat chamber for sterilization of large interpl 153
Heat sterilizable and impact resistant Ni-Cd battery develop 235
Heat sterilizable and impact resistant Ni-Cd battery develop 236
Heat sterilizable battery development/ 195
Heat sterilizable battery development/ 196
Heat sterilizable impact resistant cell development/ 71
Heat sterilizable Ni-Cd battery development/ 290
Heat sterilizable pH electrodes/ 176
Heat sterilizable, remotely activated battery development 119
Inertial sensor sterilization/ 147
Inertial sensor sterilization/ 148
Investigation of methods for the sterilization of potting 306
Investigation of methods for the sterilization of potting 307
Investigation of sterilizable high-performance accelerometer 149
Matrix test of sterilizable piece parts/ 199
Matrix test of sterilizable piece parts/ 200
Microbial contamination control after terminal sterilization 340
Planetary quarantine and spacecraft sterilization/ 124
Quality assurance requirements manual for planetary spacecr 138
Separator development for a heat sterilizable battery/ 45
Separator development for a heat sterilizable battery/ 271
Space programs summary no. 37-55, vol. 3/ 172
Sterile access studies in the pilot assembly sterilier syste 126
Sterilizable inertial sensors: high-performance acceleromete 150
Sterilizable liquid propulsion system, part 2 final report/ 192
Sterilizable wide angle gas bearing gyro FGG3345/ 88
Sterilization and decontamination. I./ 183
Sterilization and decontamination. II./ 184
Sterilization-environmental testing of initiators/ 70

COMPOUNDS

Apollo lunar module engine exhaust products/ 282

CONFIGURATION DEFINITION

Buoyant Venus station mission feasibility study for 1972 and 64

CONSTRAINT(S)

Planetary quarantine analysis/ 280

CONTAINMENT

Biological isolation garment, patent application/ 292
<table>
<thead>
<tr>
<th>CONTAMINANT(S)</th>
<th>in spacecraft/Atmospheric</th>
</tr>
</thead>
<tbody>
<tr>
<td>distribution study/</td>
<td>139</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONTAMINATED</th>
<th>by virus aerosols/Method for determining virus on surfaces/ stainless steel by laminar airflow/ surfaces/Analytical study of the products of collision of 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>in spacecraft/Atmospheric</td>
<td>177</td>
</tr>
<tr>
<td>Stainless steel</td>
<td>239</td>
</tr>
<tr>
<td>Contamination</td>
<td>103</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONTAMINATION</th>
<th>and pollution prediction/Mathematical models1 for Apollo lunar module engine exhaust products/ Biological losses and the quarantine policy for Mars/ control/5 year forecast for Design requirements for laminar airflow clean rooms and development of a laminar airflow biological cabinet/ due to an Apollo landing/Lunar atmospheric Ecology and thermal inactivation of microbes in and on inter Effectiveness of laminar airflow for controlling airborne Evaluation of alcohol sporulation method/</th>
</tr>
</thead>
<tbody>
<tr>
<td>in spacecraft/Atmospheric</td>
<td>221</td>
</tr>
<tr>
<td>Stainless steel</td>
<td>282</td>
</tr>
<tr>
<td>Contamination</td>
<td>294</td>
</tr>
<tr>
<td>Contaminated</td>
<td>134</td>
</tr>
<tr>
<td>Contaminated by virus aerosols/</td>
<td>188</td>
</tr>
<tr>
<td>Stainless steel by laminar airflow/</td>
<td>55</td>
</tr>
<tr>
<td>Surfaces/</td>
<td>101</td>
</tr>
<tr>
<td>Analytical study of the products of collision of 1</td>
<td></td>
</tr>
</tbody>
</table>

| CONTAMINATION CONTROL | Planetary quarantine progress/ Planetary quarantine provisions for unmanned planetary mission/ Principles and applications of laminar-flow devices/ Quality assurance requirements manual for planetary spacecraft | 219 |
|-----------------------|---|
| and sterilization in space programs/ | 206 |
| Approach to understanding the basic physics involved in meet Avionics clean room/ Boeing's role/Apollo and Clean room-a vital element in Clean room facilities for Explorer 35 spacecraft Clean room technology/ Considerations for Designing for the laminar flow environment/ | 138 |
| | 215 |
| | 5 |
| | 188 |
| | 128 |
| | 130 |
| | 231 |
| | 296 |
| | 59 |
| | 107 |
| | 132 |
| | 92 |
CONTAMINATION CONTROL (continued)
facilities/Microbial
Grumman Aircraft's role/Apollo and handbook/
handbook/NASA
McDonnell Douglas' role/Apollo and NASA's role/Apollo and
of microbiological hazards in the laboratory/
Planetary quarantine program/
rocketdyne's role/Apollo and
serendipity or a discipline/
State-of-the-art review/
Sterilization and decontamination techniques for space vehicle technology/Immediate and future challenges to
Traditional concepts for
training course outline/

CONTROL
Airborne contamination/Effectiveness of laminar airflow for
procedure/Limitations of the initiation of germination of ba

CORROSION
Microbial

COSPAR
Biological losses and the quarantine policy for Mars/
Contamination control and sterilization in space programs/
meeting/Twelfth annual
Potential effects of recent findings on spacecraft steriliza
Rational model for spacecraft sterilization requirements/

CRITERIA
Clean room personnel/

CRYOBIOLOGY
Life in extraterrestrial environments/

CRYOGENICS
Adhesives/

CRYOLOGY
Stability of viruses in foods for spaceflights/

DECONTAMINATION
I./Sterilization and
II./Sterilization and
Application of laminar flow rooms to patient isolation/
Biostatistics and space exploration: microbiology and steril
Clean assembly and sterilization laboratory/
Clean room facilities for Explorer 35 spacecraft/
Comments on the in-flight recontamination hazards/
Development of ethylene oxide process specifications and pro
Development of sterile insertion heat sealing tool and port
Effect of air velocity on biocontamination in a laminar cros
DESORPTION
of water by bacterial spores and its relation to dry heat re

DETECTION
of bacteria and viruses in liquids/The
of extraterrestrial life/Problems in

DETOXIFICATION
Elimination of toxicity from polyvinyl trays after steriliza
Paraformaldehyde for surface sterilization and

DEVICES
Advances in large-volume air sampling/
Bacterial contamination monitor, patent application/
Monitoring for particle contamination on surfaces with vacuu
New fast techniques for bioassay/
Sterilizable liquid propulsion system/ QPR
Vacuum probe: new approach to the microbiological sampling

DIFFUSION
model of dry heat sterilization/Investigations into a
of atmospheric contaminants by consideration of turbulent
Relationship of the surface mass average and geometric cente

DIMETHYL SULFOXIDE
Evaluation of new penetrating sporicide potentially useful
on the sporidical activity of ethylene oxide gas/Effect of

DISTRIBUTION
D_{125C} values for spore isolates from the Mariner '69 spacecra

DOSE RATE
and time factor on the bactericidal effect of radiation/Influ

DRY HEAT STERILIZATION
1973 Viking voyage to Mars/
and decontamination techniques for space vehicles/
compatibility of growth media for extraterrestrial use/
Contamination control and sterilization in space programs/
destruction of Bacillus subtilis var. niger spores on surfac
destruction rates for microorganisms on open surfaces, in
Development of the sterile insertion heat sealing tool and
Ecology and thermal inactivation of microbes in and on inter
Effects of sterilization and vacuum exposure on potential he
Environmental microbiology as related to planetary quarantin
environmental testing of initiators/
inactivation characteristics of Bacillus subtilis var. niger
inactivation kinetics of naturally occurring and subcultured
Integrated lethality of sterilization temperatures profiles/
Investigations into a diffusion model of
Microbial contamination control facilities/
Phase II of a sterilization and storage compatibility study
Planetary quarantine and spacecraft sterilization/
Planetary quarantine presentation/
Planetary quarantine program/
Potential effects of recent findings on spacecraft steriliza
Procedures for the microbiological examination of space hard
Quality assurance monitoring of the microbiological aspects
requirements, operational procedures, facilities and hardwar
DRY HEAT STERILIZATION (continued)
resistance/Absorption-desorption of water by bacterial spore resistance of Bacillus subtilis var. niger spores/Effects of Review of heat specifications/
Services provided in support of the planetary quarantine req
Services provided in support of the planetary quarantine req
Services provided in support of the planetary quarantine req
Sterilizable liquid propulsion system, part 2 final report/
Sterilizable liquid propulsion system/QPR
Sterilizable polymers/
Sterilization/
Testing a sterilizable liquid propulsion system/
Thermal death of Bacillus subtilis var. niger spores on sele

D VALUE(S)

D125C values for spore isolates from the Mariner '69 spacecr
Dry heat destruction rates for microorganisms on open surfac
Ecology and thermal inactivation of microbes in and on inter
Effect of humidity on the dry heat destruction of Bacillus s
Effects of pressure on the dry heat resistance of Bacillus s
Germicidal activity of ethylene oxide/ 14th SRP
Parametric study to determine time-temperature-vacuum relati
Parametric study to determine time-temperature-vacuum relati
Services provided in support of the planetary quarantine req
Services provided in support of the planetary quarantine req
Services provided in support of the planetary quarantine req
Services provided in support of the planetary quarantine req
Thermal death of Bacillus subtilis var. niger spores on sele

EARTH
by lunar or Martian life/Possible contamination of

ECOLOGY
and thermal inactivation of microbes in and on interplanetar
and thermal inactivation of microbes in and on interplanetar
and thermal inactivation of microbes in and on interplanetar
and thermal inactivation of microbes in and on interplanetar
Biological experimentation-methods and results/
Comparative evaluation of methods for the search for life on
Cryobiologist's conjecture of planetary life/
Desert microflora/
Frontiers in solar system exobiology/
Soil moisture, relative humidity, and microbial abundance in

ELECTRONIC
assemblies to ethylene oxide and heat sterilization/Effect
(equipment) Clean room facilities for Explorer 35 spacecraft

EMPIRICAL MODEL
Predicting diffusion of atmospheric contaminants by consider

ENCAPSULATED
in solids of spacecraft hardware/Dry heat destruction rates

-63-
ENVIRONMENT(S)

1973 Viking voyage to Mars/
Absorption and desorption of ethylene oxide/
Absorption-desorption of water by bacterial spores and its
Adhesives/
Apollo 11: Preliminary science report/
Approach to understanding the basic physics involved in meet
Atmosphere of Mars and Venus/
Atmospheric contaminants in spacecraft/
Automated microbial metabolism laboratory/
Avionics clean room/
Bacterial response to the soil
Biochemical bases for life in extraterrestrial
Buoyant Venus station mission feasibility study for 1972 and
Clean room facilities for Explorer 35 spacecraft/
Clean room personnel/
Comparative evaluation of methods for the search for life
Conceptual design study of a terminal sterilization chamber
Contamination control. A state-of-the-art review/
control at Riken laboratories/HEPA:LAF
Control of microbiological hazards in the laboratory/
Cryobiologist's conjecture of planetary life/
Desert microflora/
Designing for the laminar flow
Determination of quantitative microbial sampling requirement
Development of a laminar airflow biological cabinet/
Discussion of a possible contamination of space with terrest
Ecology and thermal inactivation of microbes in and on inter
Effect of on the sporidical activity of ethylene oxide/
Effect of decontamination sterilization, and thermal vacuum
Effect of dry heat destruction of Bacillus subtilis var. nig
Effect of high intensity visible and ultraviolet light on de
Effect of hyperoxia upon microorganisms. I. Membrane culture
Effect of pressure on the dry heat resistance of Bacillus su
Effectiveness of laminar air flow for controlling airborne
Evaluation of new penetrating sporicide potentially useful
Exobiology: the search for extraterrestrial life/
Extravehicular tunnel suit system, patent application/
Frontiers in solar system exobiology/
Fundamentals of mathematical modeling of planetary atmospher
Germicidal activity of ethylene oxide/ 14th SRP
Heat sterilizable and impact resistant Ni-Cd battery develop
Ice caps on Venus/
Integrated lethality of sterilization temperature profiles/
Interplanetary spacecraft decontamination operations and equ
Investigations into a diffusion model of dry heat sterilizat
Investigations of methods for the sterilization of potting
Life in extraterrestrial
Life in extraterrestrial
Life in space/
Lunar atmospheric contamination due to an Apollo landing/
ENVIRONMENT(S) (continued)

Martian scene/ 155
Mathematical model of the effect of a predator on species di 338
Matrix test of sterilizable piece-parts/ 199
Microbial contamination control after terminal sterilization 340
Microbial contamination detected on the Apollo 9 spacecraft/ 241
Microbiological methods of testing the atmosphere/ 52
Microbiological monitoring of spacecraft assembly facility 106
Microbiology studies/ 165
Model for the quantification of the qualitative microbial 254
Monitoring for particle contamination on surfaces with the 334
Natural selection of microorganisms in extreme 57
on biological burden during spacecraft assembly/Effect of 300
Phase II of a sterilization and storage compatibility study 204
Planetary probe-origin of atmosphere of Venus/ 210
Planetary quarantine and spacecraft sterilization/ 124
Planetary quarantine presentation/ 170
Possibility of survival of terrestrial organisms under Marti 34
Possible contamination of earth by lunar or Martian life/ 57a
Predicting diffusion of atmospheric contaminants by consider 20
Quality assurance monitoring of the microbiological aspects 136
Reduction of microbial dissemination and germicidal activity 215
Resistance of organisms to extreme influences in relation to 38
Review of heat specifications/ 225
Services provided in support of the planetary quarantine req 231
Soil moisture, relative humidity, and microbial abundance in 96
Space programs summary no. 37-58, vol. 3/ 173
Stability of viruses in foods for spaceflights/ 107
Sterile soil from Antarctica: organic analysis/ 162
Sterilizable inertial sensors: high performance acceleromete 150
Sterilizable liquid propulsion system/ QPR 193
Sterilizable polymeric materials/ 175
Sterilizable polymers/ 258
Sterilizable wide angle gas bearing gyro FGG3345/ 88
Sterilization and thermal-vacuum effects on spacecraft polym 259
Study of the application of laminar flow ventilation to oper 132
Study of thermal kill of viable organisms during Mars atmosp 92
Survival of microorganisms in space/ 190
Television observations from Mariner 6 and 7/ 185
Thermal death of Bacillus subtilis var. niger spores on sele 227
Traditional concepts for contamination control/ 234
Vacuum probe: new approach to the microbiological sampling 336

ENVIRONMENTAL
microbiology as related to planetary quarantine/ 74
testing of initiators/Sterilization 70

ENZYME
activity in terrestrial soil in relation to exploration of 50
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advances in large-volume air sampling/</td>
<td>116</td>
</tr>
<tr>
<td>Antarctic dry valley soil microbial incubation and gas comp</td>
<td>94</td>
</tr>
<tr>
<td>Apollo and contamination control Boeing's role/</td>
<td>109</td>
</tr>
<tr>
<td>Biological isolation garment, patent application/</td>
<td>292</td>
</tr>
<tr>
<td>Clean assembly and sterilization laboratory/</td>
<td>110</td>
</tr>
<tr>
<td>Clean room technology/</td>
<td>318</td>
</tr>
<tr>
<td>Conceptual design study of a terminal sterilization chamber</td>
<td>60</td>
</tr>
<tr>
<td>Control of microbiological hazards in the laboratory/</td>
<td>233</td>
</tr>
<tr>
<td>Design requirements for laminar airflow clean rooms and devi</td>
<td>188</td>
</tr>
<tr>
<td>Designing for the laminar flow environment/</td>
<td>332</td>
</tr>
<tr>
<td>Development of a laminar airflow biological cabinet/</td>
<td>55</td>
</tr>
<tr>
<td>Ecology and thermal inactivation of microbes in and on inter</td>
<td>246</td>
</tr>
<tr>
<td>Effect of A_w on the sporicidal activity of ethylene oxide/</td>
<td>179</td>
</tr>
<tr>
<td>Effect of environment on biological burden during spacecraft</td>
<td>300</td>
</tr>
<tr>
<td>Elimination of toxicity from polyvinyl trays after steriliza</td>
<td>261</td>
</tr>
<tr>
<td>Experimental heat chamber for sterilization of large interpl</td>
<td>79</td>
</tr>
<tr>
<td>Experimental heat chamber for sterilization of large interpl</td>
<td>80</td>
</tr>
<tr>
<td>Experimental heat chamber for sterilization of large interpl</td>
<td>82</td>
</tr>
<tr>
<td>Experimental heat chamber for sterilization of large interpl</td>
<td>152</td>
</tr>
<tr>
<td>Experimental heat chamber for sterilization of large interpl</td>
<td>153</td>
</tr>
<tr>
<td>Experimental heat chamber for sterilization of large interpl</td>
<td>154</td>
</tr>
<tr>
<td>Extravehicular tunnel suit system, patent application/</td>
<td>181</td>
</tr>
<tr>
<td>Immediate and future challenges to contamination control tec</td>
<td>120</td>
</tr>
<tr>
<td>Interactions between radiation fields from RTGs and scientif</td>
<td>207</td>
</tr>
<tr>
<td>Interplanetary spacecraft decontamination operations and</td>
<td>8</td>
</tr>
<tr>
<td>Microbial contamination control facilities/</td>
<td>262</td>
</tr>
<tr>
<td>Microbiological control of radiation sterilization of medica</td>
<td>9</td>
</tr>
<tr>
<td>Paraformaldehyde for surface sterilization and detoxificatio</td>
<td>301</td>
</tr>
<tr>
<td>Principles and applications of laminar-flow devices/</td>
<td>206</td>
</tr>
<tr>
<td>Resistance of the protozoan colpoda maupasi to Martian condi</td>
<td>191</td>
</tr>
<tr>
<td>Sterile access studies in the pilot assembly sterilization</td>
<td>126</td>
</tr>
<tr>
<td>Sterilization and decontamination. I./</td>
<td>183</td>
</tr>
<tr>
<td>Sterilization and decontamination. II./</td>
<td>184</td>
</tr>
<tr>
<td>Sterilization-assembly development laboratory facility descri</td>
<td>247</td>
</tr>
<tr>
<td>Sterilization-environmental testing of initiators/</td>
<td>70</td>
</tr>
<tr>
<td>Technology feasiblility spacecraft thermal math modeling term</td>
<td>22</td>
</tr>
<tr>
<td>C702543 Alpha III ball bearing gyroscope motor sterilization</td>
<td>49</td>
</tr>
<tr>
<td>Absorption and desorption of</td>
<td>143</td>
</tr>
<tr>
<td>and heat sterilizaton/Effects of exposure of electronic asse</td>
<td>18</td>
</tr>
<tr>
<td>(compatible) Sterilizable liquid propulsion system developme</td>
<td>142</td>
</tr>
<tr>
<td>Contamination control and sterilization in space programs/</td>
<td>220</td>
</tr>
<tr>
<td>Development of the sterile insertion heat sealing tool and</td>
<td>201</td>
</tr>
<tr>
<td>Effect of A_w on the sporicidal activity of</td>
<td>179</td>
</tr>
<tr>
<td>Effect of decontamination sterilization, and thermal vacuum</td>
<td>257</td>
</tr>
<tr>
<td>Effect of dimethyl sulfoxide on the sporicidal activity of</td>
<td>291</td>
</tr>
<tr>
<td>Elimination of toxicity from polyvinyl trays after steriliza</td>
<td>261</td>
</tr>
<tr>
<td>Evaluation of new penetrating sporicide potentially useful</td>
<td>56</td>
</tr>
<tr>
<td>Germicidal activity of/ 14th SRP</td>
<td>218</td>
</tr>
</tbody>
</table>
ETHYLENE OXIDE (continued)

Interplanetary spacecraft decontamination operations and equ 8
Limitations of thioglycolate broth as a sterility test media 13
Microbial contamination control facilities/ 262
Planetary quarantine presentation/ 170
Principles and applications of laminar flow devices/ 206
process specifications and procedures/ 167
Reduction of microbial dissemination and germicidal activity 215
Reduction of microbial dissemination and germicidal activity 216
Sterilizable liquid propulsion system/ 39
Sterilizable liquid propulsion system/ 194
Sterilizable liquid propulsion system, part 2 final report 192
Sterilizable polymers/ 258
sterilization, a current review of principles and practices/ 178
Sterilization and decontamination techniques for space vehic 10
Sterilization and decontamination. I./ 183
sterilization/Methyl bromide as an aid to 238
Testing a sterilizable liquid propulsion system/ 28

EVALUATION

of methods for the search for life on Mars/A comparative 166

EXOBIOLGY

1973 Viking voyage to Mars/ 325
Atmospheres of Mars and Venus/ 121
Automated microbial metabolism laboratory/ 186
Enzyme activity in terrestrial soil in relation to explorati 50
Frontiers in solar system 264
Hypothetical Martian biosphere/ 189
Life in space/ 36
Phase II of a sterilization and storage compatibility study 204
Planetary and space environments/ 42
Possible contamination of earth by lunar or Martian life/ 57a
problems/Resistance of organisms to extreme influences in 38
Resistance of the protozoon colpoda maupasi to Martian condi 191
search for extraterrestrial life/ 133
Spacecraft sterilization/ 59

EXPLORATION

of the Martian surface/Enzyme activity in terrestrial soil 50

EXPLORER 35 SPACECRAFT

Clean room facilities for 32

EXTRATERRESTRIAL

environments/Biochemical bases for life in 326
environments/Life in 144
environments/Life in 145
use/Phase of a sterilization and storage compatibility study 204

EXTRATERRESTRIAL LIFE

detection/Experiments and instrumentation for 33
Exobiology 133
Ice caps on Venus/ 35
Planetary quarantine progress/ 219
Possibility of survival of terrestrial organisms under Marti 34
Problems in detection of 23

EXTRAVIDEICIAL

tunnel suit system, patent application/ 181

-67-
FACILITIES
Microbial contamination control 262

FACTOR PROFILES
Characterization of bacterial populations by means of 51

FILTER
Designing for the laminar flow environments/ 332
Germicidal activity of ethylene oxide/ 14th SRP 218
HEPA:LAF environmental control at Riken laboratories/ 137

FILTRATION
Sterilization 117

FRACTURE SOLIDS
Release of microbial contamination from 230

FRAGMENTATION TECHNIQUES
Evaluation and refinement of a mathematical model for the 16

GAS BEARING GYRO
FGG3345/Sterilizable wide angle 88

GEOMETRIC CENTER TEMPERATURES
in transient conduction heat flow/Relationship of the surfac 31

GERMICidal ACTIVITY
of ethylene oxide/ 14th SRP 218
of ethylene oxide/Reduction of microbial dissemination and 215
of ethylene oxide/Reduction of microbial dissemination and 216

GROWTH
Mathematics of microbial populations/ 46
media for extraterrestrial use/Phase II of a sterilization 204
media for extraterrestrial use/Sterilization compatibility 222
Systematic description and key to streptomyces isolants from 73

GYRO
FGG3345/Sterilizable wide angle gas bearing 88

GYROSCOPE
motor sterilization program/C702543 Alpha III ball bearing 49

HANDBOOK
Contamination control 265
NASA contamination control 135

HARDWARE
Apollo and contamination control Boeing's role/ 109
Biostatistics and space exploration: microbiology and steril 112
Clean assembly and sterilization laboratory/ 110
Conceptual design study of a terminal sterilization chamber 60
Continuation of the development of a typical Mars landing 61
Continuation of the development of a typical Mars landing 62
Continuation of the development of a typical Mars landing 63
Control of microbiological hazards in the laboratory/ 233
Development of a laminar airflow biological cabinet 55
Development of the sterile insertion heat sealing tool and 201
Dry heat destruction rates for microorganisms on open surface 232
Effects of decontamination sterilization, and thermal vacuum 257
Effects of exposure of electronic assemblies to ethylene oxide 18
Effects of sterilization procedures on spacecraft materials/ 253
Evaluation of new penetrating sporicide potentially useful 56
Experimental heat chamber for sterilization of large interpl 79
Experimental heat chamber for sterilization of large interpl 80
Experimental heat chamber for sterilization of large interpl 81
Experimental heat chamber for sterilization of large interpl 82
Experimental heat chamber for sterilization of large interpl 83
Experimental heat chamber for sterilization of large interpl 84
Experimental heat chamber for sterilization of large interpl 152
Feasibility of thermoradiation for sterilization of spacecraft 251
Integrated lethality of sterilization temperatures profiles/ 115
NASA's current edition/Procedures for the microbiological ex 127
Paraformaldehyde for surface sterilization and detoxificatio 301
Planetary quarantine and spacecraft sterilization/ 124
Planetary quarantine progress/ 219
Planetary quarantine presentation/ 170
Potential effects of recent findings on spacecraft steriliza 272
Principles and applications of laminar-flow devices/ 206
Quality assurance monitoring of the microbiological aspects 136
Severe planetary environments and their implications on tech 125
Sterile access studies in the pilot assembly sterilization 126
Sterilization and thermal-vacuum effects on spacecraft polym 259
Sterilization-environmental testing of initiators/ 70
Sterilization requirements, operational procedures, faciliti 17
Sterilization supporting activities/ 140
Thermal death of Bacillus subtilis var. niger spores on sele 227
Traditional concepts for contamination control/ 234

HAZARDS
Containment of microbial aerosols in a microbiological safet 2

HEAT - HEATING
C702543 Alpha III ball bearing gyroscope motor sterilization 49
chamber for sterilization of large interplanetary structures 79
chamber for sterilization of large interplanetary structures 80
chamber for sterilization of large interplanetary structures 81
chamber for sterilization of large interplanetary structures 82
chamber for sterilization of large interplanetary structures 83
chamber for sterilization of large interplanetary structures 84
chamber for sterilization of large interplanetary structures 152
chamber for sterilization of large interplanetary structures 153
chamber for sterilization of large interplanetary structures 154
(cycle) Experimental heat chamber for sterilization of large 79
Development and application of a system model for spacecraft 122
Effects of sterilization procedures on spacecraft materials/ 253
Exospheric temperatures on Mars and Venus/ 161
Feasibility of thermoradiation for sterilization of spacecraft 251
flow/Relationship of the surface mass average and geometric 31
Inertial sensor sterilization/ 147
HEAT - HEATING (continued)

Kinetics of thermal death of bacteria/ 209
Limitations of the initiation of germination of bacterial sp 19
Natural selection of microorganisms in extreme environments 57
Paraformaldehyde for surface sterilization and detoxification 301
Planetary quarantine presentation 170
Planetary quarantine program/ 267
Quality assurance requirements manual for planetary spacecraft 138
(resistance) Sterilizable polymeric materials/ 175
sealing tool and port opening/Development of the sterile 201
Spacecraft component survivability during entry into the 296
Spacecraft sterilization by destructive 297
specification/Review of sterilizable and impact resistant Ni-Cd battery development 235
sterilizable and impact resistant Ni-Cd battery development 236
sterilizable and impact resistant Ni-Cd battery development 237
sterilizable battery development 195
sterilizable battery development 196
sterilizable battery/Separator development for a 45
sterilizable battery separators/Application of bench tests 327
sterilizable battery separators/Application of bench tests 328
sterilizable battery/Separator development for a 271
sterilizable impact resistant cell development/ 71
Sterilizable inertial sensors: high-performance accelerometer 150
Sterilizable liquid propulsion system/QPR 194
Sterilizable liquid propulsion system development/ 142
sterilizable Ni-Cd battery development 290
sterilizable pH electrodes/ 176
sterilizable, remotely activated battery development program 119
Sterilization and decontamination. II./ 184
sterilization/Effects of exposure of electronic assemblies 18
(sterilization) Matrix test of sterilizable piece parts/ 200
(tolerant) Development of high resolution, high stability 26

HELIUM

Experimental heat chamber for sterilization of large interpl 83

HEPA FILTERS

Microbial contamination control facilities 262
Principles and applications of laminar-flow devices/ 206

HETEROTROPHIC MICROORGANISMS

Problems in detection of extraterrestrial life/ 23

HIGH-PERFORMANCE ACCELEROMETER

Development of a sterilizable 146
Investigation of sterilizable 149
Sterilizable inertial sensors 150

HUMIDITY

on the dry heat destruction of Bacillus subtilis var. niger 118

HYPEROXIA

upon microorganisms. Membrane culture techniques for exposin 7
ICE CAPS

on Venus/

INACTIVATION

characteristics of Bacillus subtilis var. niger spores/Dry kinetics of naturally occurring and subcultured bacterial spores 293

INERTIAL SENSOR

high performance accelerometer/Sterilizable sterilization/ 150

sterilization/ 147

sterilization/ 148

IN-FLIGHT

recontamination hazards/Comments on the 320

INITIATORS

Sterilization-environmental testing of 70

INSTRUMENTATION

for extraterrestrial life detection/Experiments and 33

INTERNAL MICROBIAL CONTAMINATION

of spacecraft materials/Evaluation and refinement of a mathematical model 16

INTERPLANETARY

payload/Conceptual design study of a terminal sterilization structure/Experimental heat chamber for sterilization of 60

structures/Experimental heat chamber for sterilization of 79

structures/Experimental heat chamber for sterilization of 80

structures/Experimental heat chamber for sterilization of 81

structures/Experimental heat chamber for sterilization of 82

structures/Experimental heat chamber for sterilization of 83

structures/Experimental heat chamber for sterilization of 84

structures/Experimental heat chamber for sterilization of 152

structures/Experimental heat chamber for sterilization of 153

structures/Experimental heat chamber for sterilization of 154

IONIZING RADIATION

Effects of high intensity visible and ultraviolet light on 104

Influence of the dose rate and time factor on the bactericidal 228

Resistance of organisms to extreme influences in relation to 38

INSONATION

Effect of relative humidity on survival of Bacillus subtilis 323

JUPITER

Frontiers in solar system exobiology/ 264

Life in space/ 36

KINETIC(S)

death model/Modeling and the 85

Effects of high intensity visible and ultraviolet light on 104

Mathematics of microbial populations/ 46

model of bacterial inactivation/ 285

model of naturally occurring and subcultured bacterial spores from 76

of thermal death of bacteria/The 209

Proper use of biological indicators in sterilization/ 6

Rational model for spacecraft sterilization requirements/ 5

-71-
LAMINAR AIRFLOW
- Apollo and contamination control—Boeing's role/
- Avionics clean room/
- Biological cabinet/Development of a clean room techniques/Development of clean rooms and devices/Design requirements for devices/Basis principles of devices/Principles and application of Effect of air velocity on biocontamination in a clean room environment/Designing for the environment for controlling airborne contamination/Effectiveness of HEPA:LAF environmental control at Riken laboratories/
- Microorganisms removed from contaminated stainless steel by Planetary quarantine program/
- Rooms to patient isolation/The application of Vacuum probe: new approach to the microbiological sampling ventilation to operating rooms/Study of the application of

LANDING CAPSULE
- Sterilization container/Continuation of the development of surfaces/Thermal death of Bacillus subtilis var. niger spore

LIFE
- in space/on Mars/Comparative evaluation of methods for the search for

LIFE DETECTION
- Microbiology studies/
 - (techniques) Exobiology: the search for extraterrestrial life

LIGHT SCATTERING MEASUREMENTS
- Size and shape of bacteria by

LIMITATIONS
- of the initiation of germination of bacterial spores as a sp

LIQUID
- propulsion system, part 2 final report/Sterilizable propulsion system/Sterilizable propulsion system/Sterilizable propulsion system/Sterilizable sterile insertion/A feasibility study of

LUNAR
- Atmospheric contamination due to an Apollo landing/
 - Missions/Implementation of a chemical contaminant inventory module engine exhaust products/Apollo or Martian life/Possible contamination of earth by planetary quarantine systems study and information system/

LYOPHILIZATION
- Ecology and thermal inactivation of microbes in and on inter
 - Experimental model of a bacterial aerosol in the dust phase/
MINER

(4) Mars surface models [1968] NASA space vehicle design
(5) Buoyant Venus station mission feasibility study for 1972
(5) Ice caps on Venus/
6 and 7/Television observations from
'69 spacecraft: a relative distribution/D_{125} values for spo
1973 Viking voyage to Mars/
Development of a sterilizable high performance accelerometer
Martian scene/
Planetary quarantine presentation/
Effects of sterilization and vacuum exposure on potential

MARINER MARS

1969 a preliminary report/
1969 flight path design and mission analysis/
1969 Services provided in support of the planetary quarantine
Space programs summary no. 37-60, vol. 1. flight projects/

MARINER VENUS

Study program on the development of mathematical models(s)

MARS

1973 Viking voyage to
and Venus/Atmospheres of
and Venus/Exospheric temperatures on
atmospheric entry/Study of the thermal kill of viable organi
ATP assay of terrestrial soils—a test of an exobiological
Biological losses and the quarantine policy for
Buoyant Venus station mission feasibility study for 1972
Capsule system advanced development sterilization program/
Comparative evaluation of methods for the search for life on
Contamination control and sterilization in space programs/
Cryobiologist's conjecture of planetary life/
Frontiers in solar system exobiology/
Hypothetical Martian biosphere/
landing capsule sterilization container/Continuation of the
landing capsule sterilization container/Continuation of the
landing capsule sterilization container/Continuation of the
Life in extraterrestrial environments/
Life in extraterrestrial environments/
Life in space/
Mariner-Mars 1969 a preliminary report/
Microbiology studies/
mission/Effects of sterilization and vacuum exposure on pote
on earth/
Planetary quarantine progress/
Resistance of the protozoon colpoda maupasi to Martian condi
(space probes) Mariner Mars 1969 flight path design and miss
Sterile soil from antarctica: organic analysis/
Spacecraft sterilization by destructive heating/
surface models [1968] NASA space vehicle design criteria
Television observations from Mariner 6 and 7/
water vapor in its atmosphere/

-73-
MARTIAN
atmosphere/Spacecraft component survivability during entry 296
biosphere/A hypothetical 189
conditions of atmospheric pressure and low partial pressure 191
conditions/Possibility of survival of terrestrial organisms 34
environment on certain enzymes/Effect of a simulated 69
life/Possible contamination of earth by lunar or 57a
scene/The 155
surface/Enzyme activity in terrestrial soil in relation to 50
MST
SEE MOBILE ASSEMBLY STERILIZATION TECHNIQUES
MATED SURFACE
areas and encapsulated in solids of spacecraft hardware/Dry 232
(contamination) Effect of humidity on the dry heat destructi 118
(contamination) Evaluation of new penetrating sporicide pot 56
Effects of pressure on the dry heat resistance of Bacillus 226
Investigation of methods for the sterilization of potting 306
Investigation of methods for the sterilization of potting 307
MATHEMATICS
of microbial populations/ 46
MATHEMATICAL MODEL(S) - MATHEMATICAL MODELING
Analytical basis for assaying buried biological contaminatio 180
for contamination and pollution prediction/ 221
for microbial burden prediction/Study program on the develop 202
for statistical determination of internal microbial contamin 16
of the effect of a predator on species diversity/A 338
of planetary atmospheres/Fundamentals of 198
Stochastic 281
terminal sterilization cycle/Technology feasibility spacecra 22
terminal sterilization cycle/Technology feasibility spacecra 164
MECHANICAL TESTING
Sterilizable polymeric materials/ 175
MEMBRANE
culture techniques for exposing cells directly to test atmos 7
(filter) Monitoring for particle contamination on surfaces 334
(filter) Reduction of microbial dissemination germicidal act 216
filter support for test organisms/Long-term bactericidal eff 4
Sterilizable liquid propulsion system/ 193
Study of aseptic maintenance by pressurization/ 102
MERCURY
Frontiers in solar system exobiology/ 264
METABOLISM
laboratory/Automated microbial 186
Microbiology studies/ 165
METHODS
for the search for life on Mars/Comparative evaluation of 166
METHYL BROMIDE
as an aid to ethylene oxide sterilization/ 238
MICROBES
in and on interplanetary space vehicle components/Ecology 243
in and on interplanetary space vehicle components/Ecology 244
in and on interplanetary space vehicle components/Ecology 245
in and on interplanetary space vehicle components/Ecology 246
<table>
<thead>
<tr>
<th>MICROBIAL</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>abundance in dry valleys of Souther Victoria Land/Soil moist (assay) Capsule system advanced development sterilization pr burden prediction/Study program on the development of mathem contamination control after terminal sterilization/ contamination control facilities/ contamination detected on the Apollo 9 spacecraft/ contamination from fractured solids/Release of (contamination) Microbiological evaluation of the vacuum pro contamination of spacecraft materials/Evaluation and refinem corrosion/ dissemination and germicidal activity of ethylene oxide/Reduction dissemination and germicidal activity of ethylene oxide/Reduction dissemination/Reduction of incubation and gas composition/Antarctic dry valley soil load monitor/Manned spacecraft metabolism laboratory/Automated populations/Mathematics of sampling problem/Model for the quantification of the qualita sampling requirements for Apollo modules/Determination of</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>MICROFLORA</td>
<td></td>
</tr>
<tr>
<td>Desert in small rooms intended for long-term experiments with subje in soils of desert regions/Abundance of</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>MICROBIOLOGICAL</td>
<td></td>
</tr>
<tr>
<td>aerosol stabilizers as substitutes for bound water: a study aerosol stabilizers as substitutes for bound water: an in vi aspects of the JPL sterilization assembly development labora control of radiation sterilization of medical supplies. Numb control of radiation sterilization of medical supplies. Total evaluation of a large volume air incinerator/ evaluation of the vacuum probe surface sampler/A examination of space hardware-NASA's current edition/Procedu hazards in the laboratory/Control of methods of testing the atmosphere/ monitoring of spacecraft assembly facility operations/ profiles Apollo 7, 8, and 9 spacecraft/ safety cabinet/Containment of microbial aerosols in a sampling of surfaces/Vacuum probe: new approach to the studies on the Apollo 10 and 11 spacecraft/Qualitative</td>
<td>288</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>MICROBIOLOGY</td>
<td></td>
</tr>
<tr>
<td>and sterilization/Biostatistics and space exploration and sterilization/Biostatistics and space exploration as related to planetary quarantine/Environmental Control of microbiological hazards in the laboratory/ quality activities for a planetary mission/ Scientific publications and presentations relating to planet studies/ Traditional concepts for contamination control/</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>MICROORGANISM(S)</td>
<td>Page</td>
</tr>
<tr>
<td>-----------------</td>
<td>------</td>
</tr>
<tr>
<td>Abundance of microflora in soils of desert regions/</td>
<td>93</td>
</tr>
<tr>
<td>Advances in large-volume air sampling/</td>
<td>116</td>
</tr>
<tr>
<td>alive and imprisoned in a polymer cage/</td>
<td>317</td>
</tr>
<tr>
<td>Analytical basis for assaying buried biological contaminatio</td>
<td>180</td>
</tr>
<tr>
<td>ATP assay of terrestrial soils—a test of an exobiological ex</td>
<td>197</td>
</tr>
<tr>
<td>Biochemical bases for life in extraterrestrial environments/</td>
<td>326</td>
</tr>
<tr>
<td>Biological experimentation—methods and results/</td>
<td>14</td>
</tr>
<tr>
<td>Biological losses and the quarantine policy for Mars/</td>
<td>294</td>
</tr>
<tr>
<td>Clean assembly and sterilization laboratory/</td>
<td>110</td>
</tr>
<tr>
<td>Clean room technology/</td>
<td>318</td>
</tr>
<tr>
<td>Comments on the in-flight recontamination hazards/</td>
<td>320</td>
</tr>
<tr>
<td>Comparative evaluation of methods for the search for life on</td>
<td>166</td>
</tr>
<tr>
<td>Contamination control and sterilization in space programs/</td>
<td>220</td>
</tr>
<tr>
<td>Continuation of the development of a typical Mars landing</td>
<td>61</td>
</tr>
<tr>
<td>Continuation of the development of a typical Mars landing</td>
<td>62</td>
</tr>
<tr>
<td>Continuation of the development of a typical Mars landing</td>
<td>63</td>
</tr>
<tr>
<td>Cryobiologist's conjecture of planetary life/</td>
<td>270</td>
</tr>
<tr>
<td>Desert microflora/</td>
<td>95</td>
</tr>
<tr>
<td>Designing for the laminar flow environment/</td>
<td>332</td>
</tr>
<tr>
<td>Determination of quantitative microbial sampling requirement</td>
<td>256</td>
</tr>
<tr>
<td>Development of new and improved techniques for the bioassay</td>
<td>339</td>
</tr>
<tr>
<td>Discussion of a possible contamination of space with terrest</td>
<td>91</td>
</tr>
<tr>
<td>Effects of high intensity visible and ultraviolet light on</td>
<td>104</td>
</tr>
<tr>
<td>Effects of pressure on the dry heat resistance of Bacillus</td>
<td>226</td>
</tr>
<tr>
<td>Environmental microbiology as related to planetary quarantin</td>
<td>74</td>
</tr>
<tr>
<td>Ethylene oxide sterilization, a current review of principles</td>
<td>178</td>
</tr>
<tr>
<td>Evaluation and refinement of a mathematical model for the</td>
<td>16</td>
</tr>
<tr>
<td>Evaluation of a quantal response model with variable concent</td>
<td>114</td>
</tr>
<tr>
<td>Exobiology: the search for extraterrestrial life/</td>
<td>133</td>
</tr>
<tr>
<td>Experimental heat chamber for sterilization of large interpl</td>
<td>79</td>
</tr>
<tr>
<td>Experimental heat chamber for sterilization of large interpl</td>
<td>81</td>
</tr>
<tr>
<td>from surfaces by swabbing/Recovery of known numbers of</td>
<td>12</td>
</tr>
<tr>
<td>in extreme environments/Natural selection of</td>
<td>57</td>
</tr>
<tr>
<td>in space/Survival of</td>
<td>190</td>
</tr>
<tr>
<td>Integrated lethality of sterilization temperature profiles/</td>
<td>115</td>
</tr>
<tr>
<td>Investigations into a diffusion model of dry heat sterilizat</td>
<td>65</td>
</tr>
<tr>
<td>Investigations of methods for the sterilization of potting</td>
<td>306</td>
</tr>
<tr>
<td>Investigations of methods for the sterilization of potting</td>
<td>307</td>
</tr>
<tr>
<td>Life in extraterrestrial environments/</td>
<td>145</td>
</tr>
<tr>
<td>Limitations of thioglycolate broth as a sterility test mediu</td>
<td>13</td>
</tr>
<tr>
<td>Martian scene/</td>
<td>155</td>
</tr>
<tr>
<td>Mathematical model of the effect of a predator on species</td>
<td>338</td>
</tr>
<tr>
<td>Mathematical models for contamiantion and pollution predicti</td>
<td>221</td>
</tr>
<tr>
<td>Mathematics of microbial populations/</td>
<td>46</td>
</tr>
<tr>
<td>Membrane culture techniques for exposing cells directly to</td>
<td>7</td>
</tr>
<tr>
<td>Microbiological control of radiation sterilization of medica</td>
<td>9</td>
</tr>
<tr>
<td>Microbiological control of radiation sterilization of medica</td>
<td>105</td>
</tr>
<tr>
<td>Microbiological evaluation of the vacuum probe surface sampl</td>
<td>229</td>
</tr>
<tr>
<td>Microbiology quality activities for a planetary mission/</td>
<td>108</td>
</tr>
<tr>
<td>Microbiology studies/</td>
<td>165</td>
</tr>
<tr>
<td>Model for the quantification of the qualitative microbial sa</td>
<td>254</td>
</tr>
</tbody>
</table>
MICROORGANISM(S) (continued)

on open surfaces, in mated surface areas and encapsulated in

Origin of microbial life on earth and its implications for

Phase II of a sterilization and storage compatibility study

Planetary quarantine presentation/

Planetary quarantine program/

Planetary quarantine program/

Planetary quarantine progress/

Planetary quarantine provisions for unmanned planetary missi

Potential effects of recent findings on spacecraft steriliz

Preliminary sublimation studies/

Principles and applications of laminar flow devices/

Quality assurance monitoring of the microbiological aspects

Reduction of microbial dissemination germicidal activity of

Release of microbial contamination from fractured solids/

removed from contaminated stainless steel by laminar air flo

Review of heat specifications/

Services provided in support of the planetary quarantine

Services provided in support of the planetary quarantine

Services provided in support of the planteary quarantine

Soil moisture, relative humidity, and microbial abundance in

Spacecraft component survivability during entry into Martian

Spacecraft sterilization/

Spacecraft sterilization by destructive heating/

Spacecraft sterilization training manual/

Sterilization assembly development laboratory facility desc

Sterilizing supporting activities/

Study of aseptic maintenance by pressurization/

Study of the application of laminar flow ventilation to oper

Systematic description and key to isolants from Chile-Atacam

Systematic description and key to streptomycyes isolants from

Thermal death of Bacillus subtilis var. niger spores on sele

through small orifices/Study of the possible movement of

Twelfth annual COSPAR meeting/

Ways and means of reducing to a minimum microflora in small

MISSION

analysis/Mariner Mars 1969 flight path design and

feasibility study for 1972 and 1973 launch opportunities/

MOBILE ASSEMBLY STERILIZATION TECHNIQUES (MAST)

Development of new and improved techniques for the bioassay

MODEL(S)

[1968] NASA space vehicle design criteria [environment]/Mars

Contamination control. A state-of-the-art review/

during assembly in the sterilization assembly development

for spacecraft sterilization requirements/A rational

for the quantification of the qualitative microbial sampling

of a bacterial aerosol in the dust phase/Experimental

Stochastic math

-77-
MOIST HEAT
Sterilization/
MOLSINK
Planetary quarantine analysis/
MOON
Frontiers in solar system exobiology/
Planetary quarantine program/

NITROGEN
1973 Viking voyage to Mars/
Apollo lunar module engine exhaust products/
Experimental heat chamber for sterilization of large interpl
Experimental heat chamber for sterilization of large interpl

OXYGEN
Apollo lunar module engine exhaust products/
Resistance of the protozoon colpoda maupasi to Martian condi

OPEN SURFACES
in mated surface areas and encapsulated in solids of spacecr

OPERATIONAL PROCEDURES
facilliites and hardware/Sterilization requirements,

ORGANISMS
to extreme influences in relation to some exobiological prob
under Martian conditions/Possibility of survival of (review

ORIFICES
Study of the possible movement of microorganisms through sma

QUANTAL RESPONSE MODEL
with variable concnetrations/Evaluation of a

QUALITATIVE
microbiological studies on the Apollo 10 and 11 spacecraft/

QUANTIFICATION
of the qualitative microbial sampling problem/Model for the

QUANTITATIVE
(assessment) Procedures for the microbiological examination
microbial sampling requirements for Apollo modules/Determina

QUARANTINE
policy for Mars/Biological losses and the

PARAFORMALDEHYDE
for surface sterilization and detoxification/

PARTICLE
contamination on surfaces with the vacuum probe sampler/Moni
(size) Evaluation and refinement of a mathematical model for
(size) Experimental substantiation of the aerosol method of
PARTICULATE(S)

Analytical study of the products of collisions of 1 eV atoms

Bacterial response to the soil environment/

Design requirements for laminar airflow clean rooms and devi

Designing for the laminar flow environment/

Detection of bacteria and viruses in liquids/

Discussion of a possible contamination of space with terrest

HEPA:LAF environmental control at Riken laboratories/

Immediate and future challenges to contamination control tec

Microbial contamination control after terminal sterilization

Planetary quarantine program/

Principles and applications of laminar-flow devices/

Reduction of microbial dissemination/

Reduction of microbial dissemination germicidal activity of

Spacecraft sterilization/

Study of aseptic maintenance by pressurization/

PENETRATING SPORICIDE

potentially useful in spacecraft sterilization/Evaluation of

PERFORMANCE

Heat sterilizable battery development/

PERSONNEL

Clean room

(protection) Containment of microbial aerosols in a microbio

pH ELECTRODES

Heat sterilizable

PHYSICAL

(quantitites) Mathematics of microbial populations/

(tables) Experiments and instrumentation for extraterres

(testing) Sterilizable polymeric materials/

PHYSICS

involved in meeting planetary quarantine/Approach to underst

PHYSIOLOGY

Kinetics of thermal death of bacteria/

PHOSPHATE REDUCTION

Microbial corrosion/

PIECE PARTS

Matrix test of sterilizable

Matrix test of sterilizable

PILOT ASSEMBLY STERILIZER SYSTEM (PASS)

Sterile access studies in the

PIioneer MISSIONS

PLANETARY

and space environments/

atmospheres/Fundamentals of mathematical modeling of

(capsules) Review of heat specifications/

environments and their implications on technology for future

life/A cryobiologist's conjecture of

mission/Microbiology quality activities for a

probe - origin of atmospheres of Venus/

(surfaces) Problems in detection of extraterrestrial life/
PLANETARY QUARANTINE

- Analysis of spacecraft sterilization
- Approach to understanding the basic physics involved in meeting environmental microbiology models
- Presentations related to spacecraft sterilization
- Progress on unmanned planetary missions

Policies

- Law for aerospace activities 1966-2066

Pollution

- Prediction of mathematical models for contamination

Polymeric

- Materials/Sterilizable
- Materials/Sterilization and thermal vacuum effects on spacecraft products

Potting Compounds

- Investigation of methods for sterilization and mating surfaces

Probability

- Release of microbial contamination from fractured solids

Probes

- Sterilization and decontamination techniques for space vehicular systems

Pressure

- Study of the possible movement of microorganisms on dry heat resistance of Bacillus subtilis var. niger spore

Pressurization

- Study of aseptic maintenance by

Protection

- Development of a laminar airflow biological cabinet

Procedure(S)

- Apollo and contamination control - McDonnell Douglas role
- Evaluation of a quantal response model with variable concentration
- Implementation of a chemical contaminant inventory for lunar
- Integrated lethality of sterilization temperature profiles

Propellant

- Apollo lunar module engine exhaust products

Propulsion System

- Development of sterilizable liquid (performance) Testing a sterilizable liquid propulsion system
Radioisotope thermoelectric generator (RTG) and scientific experiments on spacecraft/Interactions between component feasibility study/Planar radiation test laboratory/shield optimization study/Unmanned spacecraft

Radiation
- 1973 Viking voyage to Mars/Adhesives/Biological experimentation-methods and results/Contamination control handbook/Effects of sterilization and vacuum exposure on potential he Feasibility of thermoradiation for sterilization of spacecraft fields from RTGs and scientific experiments on spacecraft/Influence of the dose rate and time factor on bactericidal Microbial contamination control facilities/Planetary quarantine program/Sterilization/stereilization of medical supplies. Number of microorganisms/stereilization of medical supplies. Total count on medical

Recontamination
- Continuation of the development of a typical Mars landing ca Continuation of the development of a typical Mars landing ca Continuation of the development of a typical Mars landing ca hazards/Comments on the in-flight Study of the possible movement of microorganisms through sma

Refractive index
Size and shape of bacteria by light scattering measurements/

Relative humidity
- and microbial abundance in dry valleys of Southern Victoria Development of ethylene oxide process specifications and pro Effects of A_w on the sporicidal activity of ethylene oxide/Microorganisms removed from contaminated stainless steel by on survival of Bacillus subtilis var. niger spores at 22 and

Reliability
Apollo and contamination control NASA's role/Application of bench tests in the development of heat-steril Application of bench tests in the development of heat-steril Clean room technology/Development of high resolution, high stability sterilizable Effects of exposure of electronic assemblies to ethylene ox Effects of sterilization procedures on spacecraft materials/Experimental heat chamber for sterilization of large interpl Heat sterilizable and impact resistant Ni-Cd battery develop Heat sterilizable and impact resistant Ni-Cd battery develop Heat sterilizable and impact resistant Ni-Cd battery develop Heat sterilizable impact resistant cell development/Heat sterilizable pH electrodes/Heat sterilizable, remotely activated battery development Inertial sensor sterilization/Matrix test of sterilizable piece parts/Separator development for a heat sterilizable battery/
RELIABILITY (continued)
Sterilizable inertial sensors: high-performance accelerometers 150
Sterilizable liquid propulsion system, part 2 final report/ 192
Sterilizable liquid propulsion system/ QPR 194
Sterilizable polymers/ 258
Sterilizable wide angle gas bearing gyro FGG3345/ 88
Sterilization and decontamination. I./ 183
Sterilization and decontamination, II./ 184
Sterilization-environmental testing of initiators/ 70

RESISTANCE
Absorption-desorption of water by bacterial spores and its re 260
Ecology and thermal inactivation of microbes in and on interp 243
Ecology and thermal inactivation of microbes in and on interp 244
Effect of a simulated Martian environment on certain enzymes/ 69
Environmental microbiology as related to planetary quarantine 74
of organisms to extreme influences in relation to some exobi 38
of protozoon colpoda maupasi to Martian conditions of atmosp 191
Services provided in support of the planetary quarantine req 231
Thermal death of Bacillus subtilis var. niger spores on sele 227

RESTRAINT(S)
Planetary quarantine provisions for unmanned planetary missi 213
REQUIREMENTS
manual for planetary spacecraft to be sterilized by heating 138

RODAC PLATE
Control of bacterial contamination of hard surfaces in the 11

RTG SEE RADIOISOTOPE THERMALELECTRIC GENERATOR

SADL SEE STERILIZATION ASSEMBLY DEVELOPMENT LABORATORY

SAFETY
Control of microbiological hazards in the laboratory/ 233

SAMPLING
1973 Viking voyage to Mars/ 325
Analytical basis for assaying buried biological contaminatio 180
Bacterial contamination monitor, patent application/ 252
Biostatistics and space exploration: microbiology and steril 113
Comparative evaluation of methods for the search for life on 166
Control of bacterial contamination of hard surfaces in the 11
Desert microflora/ 95
Experimental model of a bacterial aerosol in the dust phase/ 53
Microbial contamination detected on the Apollo 9 spacecraft/ 241
Microbiological methods of testing the atmosphere/ 52
Microbiological monitoring of spacecraft assembly facility 106
Microbiological profiles Apollo 7, 8, and 9 spacecraft/ 240
Microbiology quality activities for a planetary mission/ 108
Model for the quantification of the qualitative microbial 254
Planetary quarantine program/ 267
Planetary quarantine program/ 268
Planetary quarantine progress/ 219
SAMPLING (continued)

Quality assurance requirements manual for planetary spacecraft
Reduction of microbial dissemination/
Reduction of microbial dissemination and germicidal activity
Services provided in support of the planetary quarantine req
Soil moisture, relative humidity and microbial abundance in

SAMPLING TECHNIQUES

Manufacturing aspects of technology feasibility spacecraft

SCIENTIFIC OBJECTIVES

Mariner Mars 1969 flight path design and mission analysis/

SENSITIVITY

Planetary quarantine presentation/

SHAPE

of bacteria by light scattering measurements/Size and

SIMULATION

Adhesives/
Analytical study of the products of collisions of 1 eV atoms
Atmospheric contaminants in spacecraft/
ATP assay of terrestrial soils-a test of an exobiological
Automated microbial metabolism laboratory/
Biological losses and the quarantine policy for Mars/
Biostatistics and space exploration: microbiology and steril
Biostatistics and space exploration: microbiology and steril
Buoyant Venus station mission feasibility study for 1972 and
Comparative evaluation for the search for life on Mars/
Continuation of the development of a typical Mars landing ca
Continuation of the development of a typical Mars landing ca
Continuation of the development of a typical Mars landing ca
Determination of quantitative microbial sampling requirement
Development and application of a system model for spacecraft
Enzyme activity in terrestrial soil in relation to explorati
Evaluation and refinement of a mathematical model for the sta
Exospheric temperatures on Mars and Venus/
Experimental heat chamber for sterilization of large interpl
Hypothetical Martian biosphere/
Investigations into a diffusion model of dry heat sterilizat
Life in extraterrestrial environments/
Life in extraterrestrial environments/
Mars surface models [1968] NASA space vehicle design criteri
Martian environment on certain enzymes/Effect of a
Mathematical model of the effect of a predator on species
Mathematical models for contamination and pollution predicti
Model for the quantification of the qualitative microbial
Modeling and the kinetic death model/
Planetary quarantine and spacecraft sterilization/
Planetary quarantine models/
Planetary quarantine presentation/
Planetary quarantine program/
Planetary quarantine program/
Planetary quarantine program/
Planetary quarantine program/

-83-
SIMULATION (continued)

Potential effects of recent findings on spacecraft sterilization

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release of microbial contamination from fractured solids/</td>
<td>230</td>
</tr>
<tr>
<td>Resistance of the protozoon colpoda maupasi to Martian condi</td>
<td>191</td>
</tr>
<tr>
<td>Severe planetary environments and their implications on tech</td>
<td>125</td>
</tr>
<tr>
<td>Spearman simultaneous estimation for a compartmental model/</td>
<td>67</td>
</tr>
<tr>
<td>Sterilizable polymeric materials/</td>
<td>175</td>
</tr>
<tr>
<td>Study of the thermal kill of viable organisms during Mars at</td>
<td>92</td>
</tr>
<tr>
<td>Study program on the development of mathematical model(s) for</td>
<td>202</td>
</tr>
<tr>
<td>Technology feasibility spacecraft thermal math modeling term</td>
<td>22</td>
</tr>
<tr>
<td>Technology feasibility spacecraft thermal math modeling term</td>
<td>164</td>
</tr>
<tr>
<td>(technology) Mars on Earth/</td>
<td>37</td>
</tr>
</tbody>
</table>

SIZE

and shape of bacteria by light scattering measurements/The

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characterization of bacterial populations by means of factor</td>
<td>51</td>
</tr>
<tr>
<td>environment/Bacterial response to the</td>
<td>77</td>
</tr>
<tr>
<td>from Antarctica: organic analysis/Sterile</td>
<td>162</td>
</tr>
<tr>
<td>Life in extraterrestrial environments/</td>
<td>144</td>
</tr>
<tr>
<td>Life in extraterrestrial environments/</td>
<td>145</td>
</tr>
<tr>
<td>microbial incubation and gas composition/Antarctic dry valley</td>
<td>94</td>
</tr>
<tr>
<td>Microbiological studies/</td>
<td>165</td>
</tr>
<tr>
<td>moisture, relative humidity and microbial abundance in dry</td>
<td>96</td>
</tr>
<tr>
<td>of desert regions/Abundance of microflora in</td>
<td>93</td>
</tr>
<tr>
<td>Systematic description and key to isolants from Chile-Atacama</td>
<td>72</td>
</tr>
</tbody>
</table>

SOIL

exploration: microbiology and sterilization/Biostatistics

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>exploration: microbiology and sterilization/Biostatistics</td>
<td>112</td>
</tr>
<tr>
<td>exploration: microbiology and sterilization/Biostatistics</td>
<td>113</td>
</tr>
<tr>
<td>flights/Stability of viruses in foods for</td>
<td>107</td>
</tr>
<tr>
<td>Life in (probes) Atmospheres of Mars and Venus/</td>
<td>36</td>
</tr>
<tr>
<td>(probes) Buoyant Venus station mission feasibility study for</td>
<td>121</td>
</tr>
<tr>
<td>(probes) Buoyant Venus station mission feasibility study for</td>
<td>64</td>
</tr>
<tr>
<td>(probes) Ice caps on Venus/</td>
<td>99</td>
</tr>
<tr>
<td>(probes) Mariner-Mars 1969 a preliminary report/</td>
<td>35</td>
</tr>
<tr>
<td>(probes) Planetary probe-origin of atmosphere of Venus/</td>
<td>212</td>
</tr>
<tr>
<td>programs/Contamination control and sterilization in</td>
<td>210</td>
</tr>
<tr>
<td>vehicle components/Ecology and thermal inactivation of micro</td>
<td>220</td>
</tr>
<tr>
<td>vehicle components/Ecology and thermal inactivation of micro</td>
<td>243</td>
</tr>
<tr>
<td>vehicle components/Ecology and thermal inactivation of micro</td>
<td>244</td>
</tr>
<tr>
<td>vehicle components/Ecology and thermal inactivation of micro</td>
<td>245</td>
</tr>
<tr>
<td>vehicle design criteria[environment]/Mars surface models '68</td>
<td>246</td>
</tr>
<tr>
<td>vehicles/Sterilization and decontamination techniques for</td>
<td>68</td>
</tr>
<tr>
<td>with terrestrial life/Discussion of a possible contamination</td>
<td>10</td>
</tr>
</tbody>
</table>

SPACE

environments/Planetary and exploration: microbiology and sterilization/Biostatistics

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>exploration: microbiology and sterilization/Biostatistics</td>
<td>112</td>
</tr>
<tr>
<td>exploration: microbiology and sterilization/Biostatistics</td>
<td>113</td>
</tr>
<tr>
<td>flights/Stability of viruses in foods for</td>
<td>107</td>
</tr>
<tr>
<td>Life in (probes) Atmospheres of Mars and Venus/</td>
<td>36</td>
</tr>
<tr>
<td>(probes) Buoyant Venus station mission feasibility study for</td>
<td>121</td>
</tr>
<tr>
<td>(probes) Buoyant Venus station mission feasibility study for</td>
<td>64</td>
</tr>
<tr>
<td>(probes) Ice caps on Venus/</td>
<td>99</td>
</tr>
<tr>
<td>(probes) Mariner-Mars 1969 a preliminary report/</td>
<td>35</td>
</tr>
<tr>
<td>(probes) Planetary probe-origin of atmosphere of Venus/</td>
<td>212</td>
</tr>
<tr>
<td>programs/Contamination control and sterilization in</td>
<td>210</td>
</tr>
<tr>
<td>vehicle components/Ecology and thermal inactivation of micro</td>
<td>220</td>
</tr>
<tr>
<td>vehicle components/Ecology and thermal inactivation of micro</td>
<td>243</td>
</tr>
<tr>
<td>vehicle components/Ecology and thermal inactivation of micro</td>
<td>244</td>
</tr>
<tr>
<td>vehicle components/Ecology and thermal inactivation of micro</td>
<td>245</td>
</tr>
<tr>
<td>vehicle design criteria[environment]/Mars surface models '68</td>
<td>246</td>
</tr>
<tr>
<td>vehicles/Sterilization and decontamination techniques for</td>
<td>68</td>
</tr>
<tr>
<td>with terrestrial life/Discussion of a possible contamination</td>
<td>10</td>
</tr>
</tbody>
</table>

SPACECRAFT

1973 Viking voyage to Mars/

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical basis for assaying buried biological contaminaioi</td>
<td>180</td>
</tr>
<tr>
<td>Apollo and contamination control - McDonnell Douglas' role/</td>
<td>182</td>
</tr>
<tr>
<td>Apollo and contamination control - NASA's role/</td>
<td>319</td>
</tr>
</tbody>
</table>
SPACECRAFT (continued)

Application of bench tests in development of heat sterilizable assembly areas/Dry heat inactivation kinetics of naturally assembly/Effect of environment on biological burden during assembly facility operations/Microbiological monitoring of Atmospheric contaminants in Biological losses and the quarantine policy for Mars/Biostatistics and space exploration: microbiology and sterilBuoyant Venus station mission feasibility study for 1972 and Capsule system advanced development sterilization program/Clean assembly and sterilization laboratory/Clean room facilities for Explorer 35 Clean room technology/Comments on the in-flight recontamination hazards/Component survivability during entry into the Martian atmospConceptual design study of a terminal sterilization chamber Contamination control and sterilization in space programs/decontamination operations and equipment/Interplanetary Determination of quantitative microbial sampling requirement Development of new and improved techniques for the bioassay Development of the sterile insertion heat sealing tool and Development of a sterilizable high-performance accelerometer Discussion of a possible contamination of space with terrest Experimental heat chamber for sterilization of large interpl (hardware) Class 100 clean room program, preparation and ini hardware/Dry heat destruction rates for microorganisms on op hardware-NASA's current edition/Procedures for the microbiol Immediate and future challenges to contamination control tec Implementation of a chemical contaminant inventory for lunar Inertial sensor sterilization/Integrated lethality of sterilization temperature profiles/Interactions between radiation fields from RTGs and scienti Investigation of methods for the sterilization of potting Investigation of methods for the sterilization of potting Investigation of sterilizable high performance accelerometer Life in extraterrestrial environments/Lunar-planetary quarantine systems study and information Mariner-Mars 1969 a preliminary report/Mars surface models [1968] NASA space vehicle design criteri Martian scene/materials/Effects of sterilization procedures on materials/Evaluation and refinement of mathematical model fo Mathematical models for contamination and pollution predicti Microbial contamination control after terminal sterilization
SPACeCRaft (continued)
Microbial contamination control facilities/ 262
Microbial contamination detected on the Apollo 9 241
microbial load monitor/Manned 163
Microbiological profiles Apollo 7, 8, and 9 240
Microbiology quality activities for a planetary mission/ 108
mission/Severe planetary environments and their implications 125
Model for the quantification of the qualitative microbial 254
Phase II of a sterilization and storage compatibility study 204
Planetary quarantine presentation/ 170
Planetary quarantine program/ 269
Planetary quarantine progress/ 219
Planetary quarantine provisions for unmanned planetary missi 213
colony microbial materials/Sterilization and thermal-vacuum effects 259
colony products/Effects of decontamination sterilization, 257
preliminary report/Feasibility of thermoradiation for steril 251
(probes) Planetary quarantine analysis/ 280
Procedures for the microbiological examination of space hard 127
Quality assurance monitoring of microbiological aspects of 136
relative distribution/D125c values for spore isolates from 75
Release of microbial contamination from fractured solids/ 230
Review of heat specifications/ 225
RTG radiation test laboratory/ 97
RTG shield optimization study/Unmanned 295
Services provided in support of the planetary quarantine req 128
Services provided in support of the planetary quarantine req 129
Services provided in support of the planetary quarantine req 130
Services provided in support of the planetary quarantine req 231
Space programs summary no. 37-55, vol. 3/ 172
Space programs summary no. 37-58, vol. 3/ 173
Space programs summary no. 37-60, vol. 1. flight projects/ 174
Sterile access studies in pilot assembly sterilizer system 126
Sterilizable inertial sensors: high performance acceleromete 150
Sterilizable liquid propulsion system development/ 142
Sterilizable liquid propulsion system, part 2 final report/ 192
Sterilizable polymeric materials/ 175
Sterilizable polymers/ 258
Sterilization assembly development laboratory facility descr 247
Sterilization compatibility of growth media for extraterrest 222
Sterilization/environmental testing of initiators/ 70
Thermoradiation studies/ 250
Twelfth Annual COSPAR meeting/ 141

SPACeCRaft STERILIZATION
Spacecraft sterilization/ 59
and bioassay program/Manufacturing aspects of technology fea 40
and decontamination. I./ 183
and decontamination. II./ 184
Approach to understanding basic physics involved in meeting 15
by destructive heating/ 297
by heating/Quality assurance requirements manual for planeta 138
SPACECRAFT STERILIZATION (continued)

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development and application of a system model for</td>
<td>122</td>
</tr>
<tr>
<td>Effects of sterilization and vacuum exposure on potential</td>
<td>47</td>
</tr>
<tr>
<td>Evaluation of new penetrating sporicide potentially useful</td>
<td>56</td>
</tr>
<tr>
<td>Mariner Mars 1969 flight path design and mission analysis/</td>
<td>30</td>
</tr>
<tr>
<td>Planetary quarantine</td>
<td>124</td>
</tr>
<tr>
<td>requirements, operational procedures, facilities and hardware</td>
<td>17</td>
</tr>
<tr>
<td>requirements/Potential effects of recent findings on</td>
<td>272</td>
</tr>
<tr>
<td>requirements/Rational model for</td>
<td>5</td>
</tr>
<tr>
<td>Scientific publications and presentations relating to planet</td>
<td>78</td>
</tr>
<tr>
<td>Some applications of biophysics to</td>
<td>87</td>
</tr>
<tr>
<td>Sterilizable liquid propulsion system/</td>
<td>39</td>
</tr>
<tr>
<td>Stochastic math model/</td>
<td>281</td>
</tr>
<tr>
<td>Study of thermal kill of viable organisms during Mars atmosp</td>
<td>92</td>
</tr>
<tr>
<td>Study program on development of mathematical model(s) for mi</td>
<td>202</td>
</tr>
<tr>
<td>supporting activities/</td>
<td>140</td>
</tr>
<tr>
<td>Survival of microorganisms in space/</td>
<td>190</td>
</tr>
<tr>
<td>Testing a sterilizable liquid propulsion system/</td>
<td>28</td>
</tr>
<tr>
<td>Thermal death of Bacillus subtilis var. niger spores on sele</td>
<td>227</td>
</tr>
<tr>
<td>thermal math modeling terminal sterilization cycle/Technolog</td>
<td>22</td>
</tr>
<tr>
<td>thermal math modeling terminal sterilization cycle/Technolog training manual/</td>
<td>164</td>
</tr>
<tr>
<td></td>
<td>242</td>
</tr>
</tbody>
</table>

SPORES

- and its relation to dry heat resistance/Absorption-desorption
- at 22 and 45°C/Effect of relative humidity on survival of
- Biostatistics and space exploration: microbiology and steril
- Continuation of development of typical Mars landing capsule
- Continuation of development of typical Mars landing capsule
- Continuation of development of typical Mars landing capsule
- control procedure/Limitations of initiation of germination
- Discussion of possible contamination of space with terrestrial
- Dry heat destruction rates for microorganisms on open surface
- Dry heat inactivation characteristics of Bacillus subtilis
- Ecology and thermal inactivation of microbes in and on inter
- Ecology and thermal inactivation of microbes in and on inter
- Ecology and thermal inactivation of microbes in and on inter
- Effect of environment on biological burden during spacecraft
- Effects of pressure on the dry heat resistance of Bacillus
- Environmental microbiology as related to planetary quarantine
- Evaluation of alcohol sporulation method/
- Evaluation of new penetrating sporicide potentially useful
- Evaluation of quantal response model with variable concentrates
- from spacecraft assembly areas/Dry heat inactivation kinetic
- Germicidal activity of ethylene oxide/ 14th SRP
- Influence of dose rate and time factor on bactericidal effec
- Investigations into diffusion model of dry heat sterilizatio
- Investigations of methods for sterilization of potting compo
- Investigations of methods for sterilization of potting compo
- isolates from the Mariner '69 spacecraft: relative distribut
- Kinetics of thermal death of bacteria/
sterilizable
test medium for materials exposed to gaseous etchants oxide
terility
sterility
STERILIZABLE (continued)

- Liquid propulsion system /
- Liquid propulsion system /
- Liquid propulsion system development /
- Liquid propulsion system, part 2 final report /
- Liquid propulsion system/Testing a
- piece parts/Matrix test of
- piece parts/Matrix test of
- polymeric materials /

STERILIZATION

- 1973 Viking voyage to Mars /
- Sterilization /
- Absorption and desorption of ethylene oxide /
- and decontamination. I. /
- and decontamination. II. /
- and decontamination techniques for space vehicles /
- and detoxification/Paraformaldehyde for surface /
- and storage compatibility study of growth media for extraterrestrial use /
- and thermal vacuum effects on spacecraft polymeric materials /
- and thermal vacuum on spacecraft polymeric products/Effects
- and vacuum exposure on potential heat shield materials for
- Application of bench tests in development of heat-sterilizable
- Application of bench tests in development of heat-sterilizable
- assembly development laboratory/Biological monitoring of cap
- assembly development laboratory/Quality assurance monitoring
- Biostatistics and space exploration: microbiology and
- Biostatistics and space exploration: microbiology and
- by heating/Quality assurance requirements manual for planeta
- Buoyant Venus station mission feasibility study for 1972 and
- chamber for interplanetary payload/A conceptual design study
- Comments on the in-flight recontamination hazards /
- compatibility of growth media for extraterrestrial use /
- container/Continuation of development of a typical Mars land
- container/Continuation of development of a typical Mars land
- container/Continuation of development of a typical Mars land
- current review of principles and practices/Ethylene oxide
- cycle/Technology feasibility spacecraft thermal math modelin
- cycle/Technology feasibility spacecraft thermal math modelin
- Development and application of a system model for spacecraft
- Development of ethylene oxide process specifications and pro
- Development of sterile insertion heat sealing tool and port
- Dry heat destruction rates for microorganisms on open surfac
- Ecology and thermal inactivation of microbes in and on inter
- Effects of A_g on the sporicidal activity of ethylene oxide /
- Effects of exposure of electronic assemblies to ethylene oxi
- Effects of pressure on dry heat resistance of Bacillus subti
- environment testing of initiators /
- Evaluation of new penetrating sporicide potentially useful
- Experimental model of a bacterial aerosol in dust phase /
- Heat sterilizable battery development /
- Heat sterilizable impact resistant cell development /
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>in space programs/Contamination control and</td>
<td>220</td>
</tr>
<tr>
<td>Inertial sensor</td>
<td>147</td>
</tr>
<tr>
<td>Inertial sensor</td>
<td>148</td>
</tr>
<tr>
<td>Investigations into a diffusion model of dry heat laboratory/Clean assembly and</td>
<td>65</td>
</tr>
<tr>
<td>Life in extraterrestrial environments/</td>
<td>110</td>
</tr>
<tr>
<td>Life in extraterrestrial environments/</td>
<td>144</td>
</tr>
<tr>
<td>Methyl bromide as an aid to ethylene oxide sterilization/</td>
<td>145</td>
</tr>
<tr>
<td>Microbial contamination control after terminal</td>
<td>238</td>
</tr>
<tr>
<td>Microbial contamination control facilities/</td>
<td>340</td>
</tr>
<tr>
<td>Microbiological evaluation of a large volume air incinerator</td>
<td>262</td>
</tr>
<tr>
<td>Modeling and the kinetic death model/</td>
<td>3</td>
</tr>
<tr>
<td>of large interplanetary structures/Experimental heat chamber</td>
<td>85</td>
</tr>
<tr>
<td>of large interplanetary structures/Experimental heat chamber</td>
<td>79</td>
</tr>
<tr>
<td>of large interplanetary structures/Experimental heat chamber</td>
<td>80</td>
</tr>
<tr>
<td>of large interplanetary structures/Experimental heat chamber</td>
<td>81</td>
</tr>
<tr>
<td>of large interplanetary structures/Experimental heat chamber</td>
<td>82</td>
</tr>
<tr>
<td>of large interplanetary structures/Experimental heat chamber</td>
<td>83</td>
</tr>
<tr>
<td>of large interplanetary structures/Experimental heat chamber</td>
<td>84</td>
</tr>
<tr>
<td>of large interplanetary structures/Experimental heat chamber</td>
<td>152</td>
</tr>
<tr>
<td>of large interplanetary structures/Experimental heat chamber</td>
<td>154</td>
</tr>
<tr>
<td>of medical supplies. Total count on medical products/Microbi</td>
<td>9</td>
</tr>
<tr>
<td>of potting compounds and mated surfaces/Investigation of met</td>
<td>306</td>
</tr>
<tr>
<td>of potting compounds and mated surfaces/Investigation of met</td>
<td>307</td>
</tr>
<tr>
<td>of spacecraft-a preliminary report/Feasibility of thermoradi</td>
<td>251</td>
</tr>
<tr>
<td>of terrestrial spores/Parametric study to determine time-tem</td>
<td>89</td>
</tr>
<tr>
<td>Planetary quarantine models/</td>
<td>86</td>
</tr>
<tr>
<td>Planetary quarantine presentation/</td>
<td>170</td>
</tr>
<tr>
<td>Planetary quarantine program/</td>
<td>266</td>
</tr>
<tr>
<td>Planetary quarantine program/</td>
<td>267</td>
</tr>
<tr>
<td>Planetary quarantine program/</td>
<td>268</td>
</tr>
<tr>
<td>Planetary quarantine program/polymer/</td>
<td>269</td>
</tr>
<tr>
<td>Polymers/</td>
<td>258</td>
</tr>
<tr>
<td>Procedures for microbiological examination of space hardware</td>
<td>127</td>
</tr>
<tr>
<td>procedures on spacecraft materials/Effect of</td>
<td>253</td>
</tr>
<tr>
<td>program/C702543 Alpha III ball bearing gyroscope motor</td>
<td>49</td>
</tr>
<tr>
<td>_review of heat specifications/</td>
<td>156</td>
</tr>
<tr>
<td>Proper use of biological indicators in</td>
<td>6</td>
</tr>
<tr>
<td>Release of microbial contamination from fractured solids/</td>
<td>230</td>
</tr>
<tr>
<td>(requirements) Microbiology quality activities for a planeta</td>
<td>108</td>
</tr>
<tr>
<td>requirements, operational procedures, facilities and hardware</td>
<td>17</td>
</tr>
<tr>
<td>requirements/Potential effects of recent findings on spacemrtr</td>
<td>272</td>
</tr>
<tr>
<td>Review of heat specifications/</td>
<td>225</td>
</tr>
<tr>
<td>Some applications of biophysics to spacecraft</td>
<td>87</td>
</tr>
<tr>
<td>Space programs summary no. 37-55, vol. 3/</td>
<td>172</td>
</tr>
<tr>
<td>Spacecraft</td>
<td>59</td>
</tr>
<tr>
<td>Spacecraft component survivability during entry into Martian</td>
<td>296</td>
</tr>
<tr>
<td>Sterilizable liquid propulsion system/, part 2 final report/</td>
<td>192</td>
</tr>
<tr>
<td>Sterilizable liquid propulsion system/ QRP</td>
<td>194</td>
</tr>
<tr>
<td>Survival of microorganisms in space/</td>
<td>190</td>
</tr>
</tbody>
</table>
STERILIZATION (continued)
(techniques) Planetary quarantine progress/
temperature profiles/Integrated lethality of
Thermal death of Bacillus subtilis var. niger spores on sele
Thermoradiation
Thermoradiation studies/
Traditional concepts for contamination control/
training manual/Spacecraft
Twelfth annual COSPAR meeting/
wide angle gas bearing gyro FGG3345/
with ethylene oxide/Elimination of toxicity from polyvinyl
STERILIZATION ASSEMBLY DEVELOPMENT LABORATORY (SADL)
Biological monitoring of capsule mechanical training model
Effect of environment on biological burden during spacecraft
facility description and capabilities/
Quality assurance monitoring of microbiological aspects of
Sterilization requirements, operational procedures, faciliti
STERILIZING
supporting activities/
STOCHASTIC
math model/
STORAGE COMPATIBILITY STUDY
of growth media for extraterrestrial use/Phase II of Sterili
SUBLIMATION STUDIES
Preliminary
SULPHATE REDUCTION
Microbial corrosion/
SURFACE
mass average and geometric center temperatures in transient
models [1968] NASA space vehicle design criteria [environme
SURFACE CONTAMINATION - CONTAMINATED
by them with the aerosol method/Experimental substantiation
by virus aerosols/Method for determining virus on
Continuation of development of typical Mars landing capsule
Continuation of development of typical Mars landing capsule
Continuation of development of typical Mars landing capsule
control handbook/
Control of bacterial contamination of hard surfaces in opera
Contamination control training course outline/
Effect of environment on biological burden during spacecraft
Effect of humidity on dry heat destruction of Bacillus subti
Effect of relative humidity on survival of Bacillus subtilis
Evaluation and refinement of mathematical model for statisti
Evaluation of alcohol sporulation method/
Limitations of thioglycolate broth as a sterility test mediu
Microbiological monitoring of spacecraft assembly facility
Microorganisms removed from contaminated stainless steel by
Monitoring for particle contamination on surfaces with vacuu
Recovery of known numbers of microorganisms from surfaces by
Sterilization and decontamination techniques for space vehic

-91-
<table>
<thead>
<tr>
<th>SURFACE SAMPLER</th>
<th>Services provided in support of planetary quarantine require...</th>
</tr>
</thead>
<tbody>
<tr>
<td>SURFACE STERILIZATION</td>
<td>and detoxification/Paraformaldehyde for...</td>
</tr>
<tr>
<td>SURVEYOR</td>
<td>1973 Viking voyage to Mars/</td>
</tr>
<tr>
<td>SURVIVAL - SURVIVABILITY</td>
<td>during entry into Martian atmosphere/Spacecraft component...</td>
</tr>
<tr>
<td>of microorganisms in space/</td>
<td>of terrestrial organisms under Martian conditions/Possibilit...</td>
</tr>
<tr>
<td>SWABBING</td>
<td>Recovery of known numbers of microorganisms from surfaces...</td>
</tr>
<tr>
<td>SYSTEMS ANALYSIS</td>
<td>Contamination control. A state-of-the-art review/</td>
</tr>
<tr>
<td>SYSTEM MODEL</td>
<td>for spacecraft sterilization/Development and application of...</td>
</tr>
<tr>
<td>TECHNIQUE(S)</td>
<td>Abundance of microflora in soils of desert regions/...</td>
</tr>
<tr>
<td></td>
<td>Antarctic dry valley soil microbial incubation and gas compo...</td>
</tr>
<tr>
<td></td>
<td>Apollo and contamination control - Boeing's role/...</td>
</tr>
<tr>
<td></td>
<td>Application of bench tests in development of heat sterilizab...</td>
</tr>
<tr>
<td></td>
<td>Application of bench tests in development of heat sterilizab...</td>
</tr>
<tr>
<td></td>
<td>Biological experimentation—methods and results/...</td>
</tr>
<tr>
<td></td>
<td>Class 100 clean room program, preparation and initial operat...</td>
</tr>
<tr>
<td></td>
<td>Clean room personnel/...</td>
</tr>
<tr>
<td></td>
<td>Consideration for contamination control/...</td>
</tr>
<tr>
<td></td>
<td>Contamination control training course outline/...</td>
</tr>
<tr>
<td></td>
<td>Control of bacterial contamination of hard surfaces in opera...</td>
</tr>
<tr>
<td></td>
<td>Control of microbiological hazards in the laboratory/...</td>
</tr>
<tr>
<td></td>
<td>Detection of bacteria and viruses in liquids/...</td>
</tr>
<tr>
<td></td>
<td>Development of high resolution, high stability sterilizable...</td>
</tr>
<tr>
<td></td>
<td>Ecology and thermal inactivation of microbes in and on inter...</td>
</tr>
<tr>
<td></td>
<td>Effects of exposure of electronic assemblies to ethylene oxí...</td>
</tr>
<tr>
<td></td>
<td>Enzyme activity in terrestrial soil in relation to explorati...</td>
</tr>
<tr>
<td></td>
<td>Feasibility of thermoradiation for sterilization of spacecraft...</td>
</tr>
<tr>
<td></td>
<td>for bioassay/New fast/...</td>
</tr>
<tr>
<td></td>
<td>for bioassay of spacecraft/Development of new and improved...</td>
</tr>
<tr>
<td></td>
<td>for space vehicles/Sterilization and decontamination/...</td>
</tr>
<tr>
<td></td>
<td>Heat sterilizable and impact resistant Ni-Cd battery develop...</td>
</tr>
<tr>
<td></td>
<td>Interplanetary spacecraft decontamination operations and equ...</td>
</tr>
<tr>
<td></td>
<td>Limitations of initiation of germination of bacterial spores...</td>
</tr>
<tr>
<td></td>
<td>Limitations of thioglycolate broth as sterility test medium...</td>
</tr>
<tr>
<td></td>
<td>Microbiological control of radiation sterilization of medica...</td>
</tr>
<tr>
<td></td>
<td>of quantitative determination of virus on surfaces contamina...</td>
</tr>
<tr>
<td></td>
<td>Planetary quarantine presentation/...</td>
</tr>
<tr>
<td></td>
<td>Problems in detection of extraterrestrial life/...</td>
</tr>
<tr>
<td></td>
<td>Proper use of biological indicators in sterilization/...</td>
</tr>
</tbody>
</table>

---92---
TECHNIQUE(S) (continued)

Recovery of known numbers of microorganisms from surfaces 12
Reduction of microbial dissemination and germicidal activity 216
Relationship of surface mass average and geometric center 31
Review of heat specifications/ 225
Services provided in support of planetary quarantine require 129
Services provided in support of planetary quarantine require 231
Sterilization assembly development laboratory (SADL) facilit 247
Systematic description and key to streptomyces isolants from 73
Testing a sterilizable liquid propulsion system/ 28
Traditional concepts for contamination control/ 234
Ways and means of reducing to minimum microflora in small 321

TECHNOLOGY

5 year forecast for contamination control/ 134
Adhesives/ 205
Advances in large-volume air sampling/ 116
Analytical basis for assaying buried biological contaminatio 180
Apollo and contamination control Rocketdyne's role/ 100
Application of bench tests in development of heat sterilizab 327
ATP assay of terrestrial soils—a test of exobiological exper 197
Avionics clean room/ 111
Biological isolation garment, patent application/ 292
Biological monitoring of capsule mechanical training model 299
Buoyant Venus station mission feasibility study for 1972 and 99
Capsule system advanced development sterilization program/ 156
Clean assembly and sterilization laboratory/ 110
Clean room 318
Comparative evaluation of methods for search for life on Mar 166
Contamination control and sterilization in space programs/ 220
Contamination control handbook/ 265
Continuation of development of typical Mars landing capsule 61
Continuation of development of typical Mars landing capsule 62
Continuation of development of typical Mars landing capsule 63
Design requirements for laminar airflow clean rooms and devi 188
Development and application of system model for spacecraft 122
Development of ethylene oxide process specifications and pro 167
Development of sterile insertion heat sealing tool and port 201
Discussion of possible contamination of space with terrestri 91
Dry heat inactivation characteristics of Bacillus subtilis 293
Ecology and thermal inactivation of microbes in and on inter 243
Ecology and thermal inactivation of microbes in and on inter 245
Effect of humidity on dry heat destruction of Bacillus subti 118
Effect of relative humidity on survival of Bacillus subtilis 323
Environmental microbiology as related to planetary quarantin 74
Ethylene oxide sterilization, current review of principles 178
Evaluation of alcohol sporulation method/ 169
Experimental heat chamber for sterilization of large interpl 79
Experimental heat chamber for sterilization of large interpl 80
Experimental heat chamber for sterilization of large interpl 83
Experimental heat chamber for sterilization of large interpl 84
TECHNOLOGY (continued)

Experimental model of a bacterial aerosol in the dust phase/ 53
Extravehicular tunnel suit system, patent application/ 181
Feasibility of liquid sterile insertion/ 298
Feasibility spacecraft sterilization and bioassay program/ 40
Feasibility spacecraft thermal math modeling terminal steril 22
Feasibility spacecraft thermal math modeling terminal steril 164
for future spacecraft missions/Severe planetary environments 125
Heat sterilizable battery development/ 196
Heat sterilizable impact resistant cell development/ 71
HEPA:LAF environmental control at Riken laboratories/ 137
Immediate and future challenges to contamination control/ 120
Interactions between radiation fields from RTGs and scientif 207
Investigation of methods for sterilization of potting compou 306
Lunar planetary quarantine systems study and information sys 255
Mariner-Mars 1969 a preliminary report/ 212
Method for determining virus on surfaces contaminated by vir 177
Microbial contamination control facilities/ 262
Microbiological evaluation of vacuum probe surface sampler/ 229
Microbiological methods of testing the atmosphere/ 52
Microbiological monitoring of spacecraft assembly facility 106
Microbiology studies/ 165
Paraformaldehyde for surface sterilization and detoxificatio 301
Planetary quarantine models/ 86
Principles and applications of laminar-flow devices/ 206
Procedures for microbiological examination of space hardware 127
Quality assurance monitoring of microbiological aspects of 136
Quality assurance requirements manual for planetary spacecra 138
Reduction of microbial dissemination/ 217
Research and advanced development/ 171
Resistance of protozoon colpoda maupasi to Martian condition 191
RTG radiation test laboratory/ 97
Separator development for a heat sterilizable battery/ 45
Services provided in support of planetary quarantine require 128
Size and shape of bacteria by light scattering measurements 29
Space programs summary no. 37-55, vol. 3/ 172
Space programs summary no. 37-58, vol. 3/ 173
Spacecraft sterilization/ 59
Sterile access studies in pilot assembly sterilization syste 126
Sterilizable liquid propulsion system/ 193
Sterilizable liquid propulsion system/ 194
Sterilizable liquid propulsion system development/ 142
Sterilization/ 117
Sterilization supporting activities/ 140
Study of application of laminar flow ventilation to operatin 132
Study program on development of mathematical model(s) for 202
Twelfth annual COSPAR Meeting/ 141
Unmanned spacecraft RTG shield optimization study/ 295
<table>
<thead>
<tr>
<th>Study Title</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1973 Viking project management/</td>
<td>325</td>
</tr>
<tr>
<td>Absorption and desorption of ethylene oxide/</td>
<td>143</td>
</tr>
<tr>
<td>Adhesives/</td>
<td>205</td>
</tr>
<tr>
<td>Cryobiologist's conjecture of planetary life/</td>
<td>270</td>
</tr>
<tr>
<td>Development of ethylene oxide process specifications and pro</td>
<td>167</td>
</tr>
<tr>
<td>Dry heat destruction rates for microorganisms on open surfac</td>
<td>232</td>
</tr>
<tr>
<td>Effect of relative humidity on survival of Bacillus subtilis</td>
<td>323</td>
</tr>
<tr>
<td>Effects of pressure on dry heat resistance of Bacillus subtilis</td>
<td>226</td>
</tr>
<tr>
<td>Effects of sterilization and vacuum exposure on potential he</td>
<td>47</td>
</tr>
<tr>
<td>Ethylene oxide sterilization current review of principles an</td>
<td>178</td>
</tr>
<tr>
<td>Investigation of methods for sterilization of potting compou</td>
<td>306</td>
</tr>
<tr>
<td>Investigation of methods for sterilization of potting compou</td>
<td>307</td>
</tr>
<tr>
<td>on Mars and Venus/Exospheric</td>
<td>161</td>
</tr>
<tr>
<td>Planetary probe-origin of atmosphere of Venus/</td>
<td>210</td>
</tr>
<tr>
<td>Preliminary sublimation studies/</td>
<td>308</td>
</tr>
<tr>
<td>profiles/Integrated lethality of sterilization</td>
<td>115</td>
</tr>
<tr>
<td>Soil moisture, relative humidity, and microbial abundance in</td>
<td>96</td>
</tr>
<tr>
<td>Spacecraft component survivability during entry into Martian</td>
<td>296</td>
</tr>
<tr>
<td>Sterilization and decontamination. I./</td>
<td>183</td>
</tr>
<tr>
<td>Supposed role of microbiological aerosol stabilizers as subs</td>
<td>288</td>
</tr>
<tr>
<td>(time-relationship) Matrix test of sterilizable piece-parts/</td>
<td>199</td>
</tr>
<tr>
<td>(time relationship) Matrix test of sterilizable piece-parts/</td>
<td>200</td>
</tr>
<tr>
<td>vacuum relationships for sterilization of terrestrial spores</td>
<td>89</td>
</tr>
<tr>
<td>vacuum relationships for sterilization of terrestrial spores</td>
<td>90</td>
</tr>
<tr>
<td>TERMINAL STERILIZATION</td>
<td></td>
</tr>
<tr>
<td>chamber for interplanetary payload/Conceptual design study</td>
<td>60</td>
</tr>
<tr>
<td>cycle/Technology feasibility spacecraft thermal math modeling</td>
<td>22</td>
</tr>
<tr>
<td>TERRESTRIAL</td>
<td></td>
</tr>
<tr>
<td>life/Discussion of possible contamination of space with (microorganisms)</td>
<td>91</td>
</tr>
<tr>
<td>Approach to understanding basic physics inv</td>
<td>15</td>
</tr>
<tr>
<td>organisms under Martian conditions/F Possibility of survival</td>
<td>34</td>
</tr>
<tr>
<td>soils-test of exobiological experiment/ATP assay of</td>
<td>197</td>
</tr>
<tr>
<td>spores/Parametric study to determine time-temperature-vacuum</td>
<td>89</td>
</tr>
<tr>
<td>TEST FACILITIES</td>
<td></td>
</tr>
<tr>
<td>Testing a sterilizable liquid propulsion system/</td>
<td>28</td>
</tr>
<tr>
<td>TESTING ATMOSPHERE</td>
<td></td>
</tr>
<tr>
<td>Microbiological methods of</td>
<td>52</td>
</tr>
<tr>
<td>THERMAL</td>
<td></td>
</tr>
<tr>
<td>death of bacteria/The kinetics of</td>
<td>209</td>
</tr>
<tr>
<td>death of Bacillus subtilis var. niger spores on selected lan</td>
<td>227</td>
</tr>
<tr>
<td>inactivation of microbes in and on interplanetary space vehi</td>
<td>243</td>
</tr>
<tr>
<td>inactivation of microbes in and on interplanetary space vehi</td>
<td>244</td>
</tr>
<tr>
<td>inactivation of microbes in and on interplanetary space vehi</td>
<td>245</td>
</tr>
<tr>
<td>inactivation of microbes in and on interplanetary space vehi</td>
<td>246</td>
</tr>
<tr>
<td>kill of viable organisms during Mars atmospheric entry/Study</td>
<td>92</td>
</tr>
<tr>
<td>math modeling terminal sterilization cycle/Technology feasib</td>
<td>22</td>
</tr>
<tr>
<td>math modeling terminal sterilization cycle/Technology feasib</td>
<td>164</td>
</tr>
</tbody>
</table>
THERMAL (continued)
Matrix test of sterilizable piece-parts/
 (properties) Mars surface models [1968] NASA space vehicle 199
 (stability) Sterilization compatibility of growth media for 68
 vacuum effects on spacecraft polymeric materials/Sterilizati 222
 vacuum on spacecraft polymeric products/ 259
 (vacuum) Sterilizable polymers/ 257
 258
THERMORADIATION
 for sterilization of spacecraft-a preliminary report/Feasibi 251
 Planetary quarantine program/ 267
 Planetary quarantine program/ 268
 sterilization/ 249
 studies/ 250
THIOGLYCOLATE BROTH
 as a sterility test medium for materials exposed to gaseous 13
TIME-TEMPERATURE-VACUUM RELATIONSHIPS
 for sterilization of terrestrial spores/Parametric study 89
 for sterilization of terrestrial spores/Parametric study 90
TOLERANCE
 C702543 Alpha III ball bearing gyroscope motor sterilization 49
 Effects of A_v on the sporcidal activity of ethylene oxide/ 179
 Kinetics of thermal death of bacteria/ 209
 Life in extraterrestrial environments/ 144
 Potential effects of recent findings on spacecraft steriliza 272
 Thermal death of Bacillus subtilis var. niger spores on sele 227
 Review of heat specifications/ 225
 Services provided in support of planetary quarantine require 128
 Services provided in support of planetary quarantine require 130
 Sterilization and decontamination. I./ 183
 Survival of microorganisms in space/ 190
TOXICOLOGY
 Ethylene oxide sterilization, current review of principles 178
TRAINING
 Clean room personnel/ 58
 course outline/Contamination control 187
 manual/Spacecraft sterilization 242
ULTRAHIGH VACUUM
 Continuation of development of typical Mars landing capsule 63
ULTRASOUND
 Planetary quarantine presentation/ 170
ULTRAVIOLET IRRADIATION
 Comparative evaluation of methods for search for life on Mar 166
 Life in extraterrestrial environments/ 144
 Life in extraterrestrial environments/ 145
ULTRAVIOLET LIGHT
 Continuation of development of typical Mars landing capsule 61
 Continuation of development of typical Mars landing capsule 62
ULTRAVIOLET LIGHT (continued)
Continuation of development of typical Mars landing capsule 63
Effect of simulated Martian environment on certain enzymes/ 69
on death of microorganisms/Effects of high intensity visible 104
Planetary quarantine program/

ULTRAVIOLET RADIATION
Survival of microorganisms in space/

UNMANNED PLANETARY MISSIONS
Planetary quarantine provisions for

UNMANNED SPACECRAFT
Mariner Mars 1969 flight path design and mission analysis/
RTG shield optimization study/

USSR
Biological experimentation-methods and results/
Experimental substantiation of aerosol method of disinfectio
Mars on Earth/
Problems in detection of extraterrestrial life/

VACUUM
Adhesives/
Approach to understanding basic physics involved in meeting 205
Discussion of possible contamination of space with terrestri 15
exposure on potential heat shield materials for unmanned Mar
Planetary quarantine presentation/
Preliminary sublimation studies/
probe: new approach to microbiological sampling of surfaces/
probe sampler/Monitoring for particle contamination on surfa
(probe) Services provided in support of planetary quarantine
(probe surface sampler) Development of new and improved tech
probe surface sampler/Microbiological evaluation of the
relationships for sterilization of terrestrial spores/Parame
relationships for sterilization of terrestrial spores/Parame
Unmanned spacecraft RTG shield optimization study/

VAPOR PRESSURE
Effect of dimethyl sulfoxide on sporicidal activity of ethyl 291

VERNERA 4
Buoyant Venus station mission feasibility study for 1972 and
Ice caps on Venus/

VENUS
Atmospheres of Mars and
Exospheric temperatures on Mars and
Frontiers in solar system exobiology/
Ice caps on
Life in space/
station mission feasibility study for 1972 and 1973 launch
station mission feasibility for 1972 and 1973 launch opportu
Sterilizable polymeric materials/

-97-
VIABLE
organisms during Mars atmospheric entry/Study of thermal kil
particles of different sizes/Production of aerosols

VIABILITY
Absorption-desorption of water by bacterial spores and its
Advances in large-volume air sampling/
Analytical basis for assaying buried biological contaminatio
Biological experimentation-methods and results/
Biological losses and quarantine policy for Mars/
Bacterial response to soil environment/
Biosatistics and space exploration: microbiology and steril
Characterization of bacterial populations by means of factor
Continuation of development of typical Mars landing capsule
Control of bacterial contamination of hard surfaces in opera
Cryobiologist's conjecture of planetary life/
Development of ethylene oxide process specifications and pro
Effect of relative humidity on survival of Bacillus subtilis
Effects of high intensity visible and ultraviolet light on
Effects of hyperoxia upon microorganisms. Membrane culture te
Evaluation of quantal response model with variable concentr
Experimental model of bacterial aerosol in dust phase/
Germicidal activity of ethylene oxide/
Integrated lethality of sterilization temperature profiles/
Investigation of methods for sterilization of potting compou
Investigations into diffusion model of dry heat sterilizatio
Kinetics of thermal death of bacteria/
Limitations of initiation of germination of bacterial spores
Limitations of thioglycolate broth as sterility test medium
Mathematical models for contamination and pollution predicti
Microbial corrosion/
Microbiological control of radiation sterilization of medica
Microbiological evaluation of vacuum probe surface sampler/
Microorganisms, alive and imprisoned in a polymer cage/
Natural selection of microorganisms in extreme environments/
Parametric study to determine time-temperature-vacuum relati
Parametric study to determine time-temperature-vacuum relati
Planetary quarantine presentation/
Planetary quarantine program/
Planetary quarantine program/
Planetary quarantine program/
Potential effects of recent findings on spacecraft steriliza
Preliminary sublimiation studies/
Life in extraterrestrial environments/
Rational model for spacecraft sterilization requirements/
Recovery of known numbers of microorganisms from surfaces by
Reduction of microbial dissemination
Reduction of microbial dissemination germicidal activity of
Release of microbial contamination from fractured solids/
Review of heat specifications/
Services provided in support of planetary quarantine require
VIABILITY (continued)

Spacecraft component survivability during entry into Martian 296
Stability of viruses in foods for spaceflights/ 107
Sterilization/ 117
Study of aseptic maintenance by pressurization/ 102
Study of application of laminar flow ventilation to operation 132
Supposed role of microbiological aerosol stabilizers as an 289
Survival of microorganisms in space/ 190
Systematic description and key to isolants from Chile-Atacam 72
Systematic description and key to streptomyces isolants fro 73

VIKING

Investigation of methods for the sterilization of potting co 306
(mission) Planetary quarantine program/ 268
Space programs summary no. 37-60, Vol. 1. Flight projects/ 174
voyage to Mars/1973 325

VIRAL

aerosols and bacterial aerosols/Evaluation of air filters 151

VIRUS

aerosols/Method for determining virus on surfaces contaminat 177
on surfaces contaminated by them with aerosol method/Experim 27
in foods for spaceflights/Stability of 107
in liquids/Detection of bacteria and 208

VOYAGER

Interplanetary spacecraft decontamination operations and equ 8

WATER

1973 Viking voyage to Mars/ 325
activity: use of membrane filter support for test organisms 4
Apollo lunar module engine exhaust products/ 282
by bacterial spores and its relation to dry heat resistance 260
(content) Bacterial response to soil environment/ 77
(content) Environmental microbiology as related to planetary 74
(content) Investigations into a diffusion model of dry heat 65
cryotheilist's conjecture of planetary life/ 270
Dry heat destruction rates for microorganisms on open surfac 232
Ecology and thermal inactivation of microbes in and on inter 243
Ecology and thermal inactivation of microbes in and on inter 244
Ecology and thermal inactivation of microbes in and on inter 245
Ethylene oxide sterilization, current review of principles 178
Frontiers in solar system exobiology/ 264
Ice caps on Venus/ 35
Investigation of methods for sterilization of potting compou 307
Microbiology studies/ 165
Resistance of organisms to extreme influences in relation to 38
Soil moisture, relative humidity, and microbial abundance in 96
Television observations from Mariner 6 and 7/ 185
vapor in its atmosphere/Mars 223
wide angle gas bearing gyro FCC3345/Sterilizable 88
JOURNALS PUBLISHING

PLANETARY QUARANTINE RELATED ARTICLES

Below is an alphabetical list of journals in which articles germane to the Planetary Quarantine Program of NASA's Bioscience Programs have been published. The number of related articles which appeared in each journal is indicated parenthetically.

<table>
<thead>
<tr>
<th>Journal</th>
<th>Articles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acta Agr Scand</td>
<td>(1)</td>
</tr>
<tr>
<td>Aeronautical Journal</td>
<td>(1)</td>
</tr>
<tr>
<td>AIHA Journal</td>
<td>(1)</td>
</tr>
<tr>
<td>American Industrial Hygiene Association Journal</td>
<td>(2)</td>
</tr>
<tr>
<td>American Journal of Epidemiology</td>
<td>(1)</td>
</tr>
<tr>
<td>American Journal of Hospital Pharmacy</td>
<td>(1)</td>
</tr>
<tr>
<td>Annals of New York Academy of Sciences</td>
<td>(2)</td>
</tr>
<tr>
<td>Annual Review of Microbiology</td>
<td>(1)</td>
</tr>
<tr>
<td>Antarctic Journal</td>
<td>(2)</td>
</tr>
<tr>
<td>AORN Journal</td>
<td>(1)</td>
</tr>
<tr>
<td>Applied Microbiology</td>
<td>(9)</td>
</tr>
<tr>
<td>Astronautics and Aeronautics</td>
<td>(2)</td>
</tr>
<tr>
<td>Biochim Biophys Acta</td>
<td>(1)</td>
</tr>
<tr>
<td>Biologija i medisina (Russian)</td>
<td>(1)</td>
</tr>
<tr>
<td>Biophysical Journal</td>
<td>(1)</td>
</tr>
<tr>
<td>Bulletin of Parenteral Drug Association</td>
<td>(1)</td>
</tr>
<tr>
<td>Contamination Control</td>
<td>(11)</td>
</tr>
<tr>
<td>Cryobiology</td>
<td>(1)</td>
</tr>
<tr>
<td>Dust Topics</td>
<td>(1)</td>
</tr>
<tr>
<td>Electronic Packaging and Production</td>
<td>(2)</td>
</tr>
<tr>
<td>Food Technology</td>
<td>(1)</td>
</tr>
<tr>
<td>Journal of Applied Bacteriology</td>
<td>(1)</td>
</tr>
<tr>
<td>Journal of Atmospheric Sciences</td>
<td>(1)</td>
</tr>
<tr>
<td>Journal of British Interplanetary Society</td>
<td>(2)</td>
</tr>
<tr>
<td>Journal of Dairy Science</td>
<td>(1)</td>
</tr>
<tr>
<td>Journal of Hospital Research</td>
<td>(1)</td>
</tr>
<tr>
<td>Laboratory Practice (U.K.)</td>
<td>(1)</td>
</tr>
<tr>
<td>Mathematical Biosciences</td>
<td>(1)</td>
</tr>
<tr>
<td>Nature</td>
<td>(3)</td>
</tr>
<tr>
<td>New Scientist</td>
<td>(1)</td>
</tr>
<tr>
<td>Public Health Monograph</td>
<td>(1)</td>
</tr>
<tr>
<td>Science</td>
<td>(6)</td>
</tr>
<tr>
<td>Scientific American</td>
<td>(1)</td>
</tr>
<tr>
<td>Shell Aviation News</td>
<td>(1)</td>
</tr>
<tr>
<td>Space Biology and Medicine</td>
<td>(3)</td>
</tr>
<tr>
<td>Space Life Sciences</td>
<td>(5)</td>
</tr>
<tr>
<td>Technometrics</td>
<td>(1)</td>
</tr>
<tr>
<td>Zh Mikrobiol Epidemiol Immunobiol. (Russian)</td>
<td>(1)</td>
</tr>
</tbody>
</table>
Below is an alphabetical list of proceedings in which articles germane to the Planetary Quarantine Program of NASA's Bioscience Programs have been published. The number of related articles which appeared in each journal is indicated parenthetically.

American Association for Contamination Control. 7th Annual Technical Meeting and Exhibit, Chicago, 13-16 May 1968. Boston, American Association for Contamination Control, 1968. (1)

American Association for Contamination Control. 8th Annual Technical Meeting and Exhibit, New York, 19-22 May 1969 Boston, American Association for Contamination Control, 1969 (8)

American Institute of Chemical Engineers. 4th Intersociety Energy Conversion Engineering Conference, Washington, D.C., 22-26 September 1969, New York, American Institute of Chemical Engineers, 1969. (1)

Bacteriological Proceedings of the American Society for Microbiology. 69th Annual Meeting, Miami Beach, 4-9 May 1969 (8)

Developments in Industrial Microbiology, Volume 10. Washington, D.C. AIBS, 1969. (1)

