SCIENTIFIC PUBLICATIONS AND PRESENTATIONS RELATING TO PLANETARY QUARANTINE

Volume V
The 1969 Supplement

September 1970

BIOLOGICAL SCIENCES COMMUNICATION PROJECT
THE GEORGE WASHINGTON UNIVERSITY MEDICAL CENTER
2001 S STREET, N.W., WASHINGTON, D.C. 20009
Telephone (202) 462-5828
PREFACE

This bibliography lists publications of the NASA Planetary Quarantine Program under funded contracts and grants issued during the calendar year of 1969. The compilation follows the policy established for the previous issue by including certain non-NASA funded, but Planetary Quarantine oriented items.

The bibliography is designated The 1969 Supplement, which corrects a technical inaccuracy of past years where each annual publication was designated as an edition. The 19 November 1968 and November 1969 "editions" are in fact supplements to the basic document of 26 June 1967.
FOREWORD

Many of the documents cited in this supplement are augmented by the distributing facility designation number which is enclosed by brackets. This is done to aid the user of the supplement in obtaining a hard copy or microfiche of the referenced item. The cross hatch symbol, #, used in conjunction with the accession number indicates the item is available in microfiche as well as in hard copy.

Items with numerals preceded by only the letter "A" may be procured from the

Technical Information Service
American Institute of Aeronautics and Astronautics, Inc.
750 Third Avenue
New York, N.Y. 10017

References preceded by the letter "X" are usually limited in their distribution to NASA associated personnel. All other items are obtainable from the

Clearinghouse for Federal and Scientific Information (CFSTI)
U.S. Department of Commerce
5285 Port Royal Road
Springfield, Va. 22151

NASA contractors, grantees, and consultants may obtain many of the documents through their librarians from the

NASA Scientific and Technical Information Facility
P.O. Box 33
College Park, Md. 20740
<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface ..</td>
<td>iii</td>
</tr>
<tr>
<td>Foreword ..</td>
<td>v</td>
</tr>
<tr>
<td>List of Citations ..</td>
<td>1</td>
</tr>
<tr>
<td>Author Index ..</td>
<td>45</td>
</tr>
<tr>
<td>Permutated Title Index ...</td>
<td>50</td>
</tr>
<tr>
<td>Journals Publishing</td>
<td></td>
</tr>
<tr>
<td>Planetary Quarantine Oriented Articles</td>
<td>100</td>
</tr>
<tr>
<td>Proceedings Publishing</td>
<td></td>
</tr>
<tr>
<td>Planetary Quarantine Oriented Articles</td>
<td>101</td>
</tr>
</tbody>
</table>

 Also published in Mathematical Biosciences 2(1/2):165-179, February 1968.

-6-

87. Brannen, J.P. Some Applications of Biophysics to Spacecraft Sterilization. Presented at the University of New Mexico, Department of Physics and Astronomy, 31 October 1969.

100. Casey, E.F. Apollo and Contamination Control - Rocketdyne's Role. Contamination Control 8:16-19, October 1969. [A70-11078]

-16-

-26-

Also published in Applied Microbiology 18(6):1002-1006, December 1969. [A70-16574]

 [N69-36412 #]

 [A69-32968]

 [N70-13566 #]

 [N69-24865 #]

 [N69-33761 #]

 [N69-41103 #]

283. Sivinski, H.D. Contamination Control: Serendipity or a Discipline. Presented at the American Association for Contamination Control, 8th Annual Technical Meeting and Exhibit, New York, 19-22 May 1969.

-39-

[A70-11080]

AUTHOR INDEX

Akers, R.L. 55
Aldridge, C. 56
Alexander, M. 57,57a
Austin, P.R. 58,59
Avco Corp., Lowell Massachusetts 1,60,61,62,63

Barbeito, M.S. 2,3,301
Barger, A.R. 64
Barrett, M.J. 65
Bauman, A.J. 162
Bateman, J.B. 4,288,289
Beakley, J.W. 66,293,336
Beauchamp, J.J. 67
Beck, A.J. 68
Belikova, Ye.V. 69
Bement, L.J. 70
Berman, B. 219
Berry, J.H. 64
Bodamer, G.W. 71
Bollen, W.B. 72,73
Bond, R.G. 74
Bond, W.W. 75,76,229
Boyd, J.W. 77
Bradley, F.D. 78
Brady, H.F. 79,80,81,82,83,84
Brannen, J.P. 5,85,86,87
Bremer, J.M. 88
Brewer, J.H. 6
Brierley, J.A. 89,90
Brown, O.R. 7
Buchanan, L.M. 116
Bücher, H. 91
Bueker, R. 8
Burlingame, A.L. 282
Bursey, C.H., Jr. 92
Bychenkova, V.N. 191

Cada, R.L. 77
Cameron, R.E. 93,94,95,96,162
Campbell, R.W. 97

Caplan, H. 98
Carroll, P.C. 99
Casey, E.F. 100
Chang, G.K. 101
Chappelle, E.W. 197
Charles, R.G. 271
Chiang, K-C. 103
Cheater, D.J. 102
Chichester, C.O. 104
Chreitzberg, A.M. 71
Christensen, E.A. 9,105
Christensen, M.R. 106,140,156
Cliver, D.O. 107
Cole, J.E. 64,108
Colson, S.R. 109
Conrow, H.P. 94,96

Consultants and Designers, Inc. 110
Cooper, C.J. 111
Cornell, R.G. 67,112,113,114,230,294
Craven, C.W. 10
Crawford, A.M. 197
Crawford, J.G. 115
Crawford, R.L. 235,236,290

Dahlgren, C.M. 116
Davies, M.E. 185
Davis, N.S. 204
Decker, H.M. 116
deWys, E.C. 68
Dineen, P. 11
Dixon, G.D. 271
Dobley, W., Jr. 92
Douglas, J. 12
Doyle, J.E. 13,117
Drummond, D.W. 118
Duffee, R.A. 14
Dugan, J.W. 336
<table>
<thead>
<tr>
<th>Name</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eagle-Picher Co., Joplin, Mo.</td>
<td>119</td>
</tr>
<tr>
<td>Ehrenfeld, E.</td>
<td>29</td>
</tr>
<tr>
<td>Emborg, C.</td>
<td>105</td>
</tr>
<tr>
<td>Enlow, D.L.</td>
<td>15</td>
</tr>
<tr>
<td>Ernst, R.R.</td>
<td>13,16</td>
</tr>
<tr>
<td>Ervin, G.F.</td>
<td>17,120,140</td>
</tr>
<tr>
<td>Eshleman, V.R.</td>
<td>121</td>
</tr>
<tr>
<td>Exotech, Inc., Washington, D.C.</td>
<td>122,123,124,125</td>
</tr>
<tr>
<td>Favero, M.S.</td>
<td>75,76,127,128,129,130</td>
</tr>
<tr>
<td>Farmer, F.H.</td>
<td>126</td>
</tr>
<tr>
<td>Fewell, R.O.</td>
<td>18</td>
</tr>
<tr>
<td>Fields, N.D.</td>
<td>224</td>
</tr>
<tr>
<td>Filler, M.E.</td>
<td>116,151</td>
</tr>
<tr>
<td>Flory, D.A.</td>
<td>282</td>
</tr>
<tr>
<td>Forster, R.E.</td>
<td>131</td>
</tr>
<tr>
<td>Fox, D.G.</td>
<td>132</td>
</tr>
<tr>
<td>Frank, R.E.</td>
<td>64,99</td>
</tr>
<tr>
<td>Freundlich, M.M.</td>
<td>133</td>
</tr>
<tr>
<td>Frisque, D.E.</td>
<td>116</td>
</tr>
<tr>
<td>Gammon, R.A.</td>
<td>179</td>
</tr>
<tr>
<td>Garst, D.M.</td>
<td>54,134,135,188</td>
</tr>
<tr>
<td>Gavin, T.R.</td>
<td>136</td>
</tr>
<tr>
<td>Gehrke-Manning, J.E.</td>
<td>137</td>
</tr>
<tr>
<td>Geiger, P.J.</td>
<td>162</td>
</tr>
<tr>
<td>Gelvin, D.E.</td>
<td>204</td>
</tr>
<tr>
<td>Gelvin, D.R.</td>
<td>222</td>
</tr>
<tr>
<td>George C. Marshall</td>
<td>Space Flight Center</td>
</tr>
<tr>
<td>Godwin, W.W.</td>
<td>139</td>
</tr>
<tr>
<td>Gondusky, J.M.</td>
<td>235,236</td>
</tr>
<tr>
<td>Gould, G.W.</td>
<td>19</td>
</tr>
<tr>
<td>Graves, R.C.</td>
<td>240,241</td>
</tr>
<tr>
<td>Green, R.H.</td>
<td>140,280</td>
</tr>
<tr>
<td>Gremillion, G.G.</td>
<td>301</td>
</tr>
<tr>
<td>Grigor'yev, Yu.G.</td>
<td>141</td>
</tr>
<tr>
<td>Guenther, M.E.</td>
<td>142</td>
</tr>
<tr>
<td>Gunther, D.A.</td>
<td>143</td>
</tr>
<tr>
<td>Hagen, C.A.</td>
<td>144,145</td>
</tr>
<tr>
<td>Halbert, M.M.</td>
<td>322</td>
</tr>
<tr>
<td>Hall, C.W.</td>
<td>21</td>
</tr>
<tr>
<td>Hall, L.B.</td>
<td>272,297</td>
</tr>
<tr>
<td>Hand, P.J.</td>
<td>146,147,148,149,150</td>
</tr>
<tr>
<td>Hane, W.F.</td>
<td>64</td>
</tr>
<tr>
<td>Hansen, F.V.</td>
<td>20</td>
</tr>
<tr>
<td>Harris, D.R.</td>
<td>317</td>
</tr>
<tr>
<td>Harstad, J.B.</td>
<td>151</td>
</tr>
<tr>
<td>Hartel, B.</td>
<td>152,153,154</td>
</tr>
<tr>
<td>Hedrick, T.I.</td>
<td>21</td>
</tr>
<tr>
<td>Heldman, D.R.</td>
<td>21</td>
</tr>
<tr>
<td>Hemmenway, C.L.</td>
<td>190</td>
</tr>
<tr>
<td>Herriman, A.G.</td>
<td>185</td>
</tr>
<tr>
<td>Hindley, K.</td>
<td>155</td>
</tr>
<tr>
<td>Hoffman, A.R.</td>
<td>140,156,225,300</td>
</tr>
<tr>
<td>Hoffman, R.K.</td>
<td>157,158,159,160,238</td>
</tr>
<tr>
<td>Hogon, J.S.</td>
<td>161</td>
</tr>
<tr>
<td>Holm, N.W.</td>
<td>9,105</td>
</tr>
<tr>
<td>Homsey, R.J.</td>
<td>102</td>
</tr>
<tr>
<td>Hornbeck, G.</td>
<td>91</td>
</tr>
<tr>
<td>Horowitz, N.M.</td>
<td>162,185</td>
</tr>
<tr>
<td>Howell, R.D.</td>
<td>163</td>
</tr>
<tr>
<td>Howerton, M.T.</td>
<td>164</td>
</tr>
<tr>
<td>Howerton, T.</td>
<td>22</td>
</tr>
<tr>
<td>Huang, R.</td>
<td>295</td>
</tr>
<tr>
<td>Hubbard, J.S.</td>
<td>162,165</td>
</tr>
<tr>
<td>Hueschen, R.M.</td>
<td>126</td>
</tr>
<tr>
<td>Huggett, D.O.</td>
<td>7</td>
</tr>
<tr>
<td>Hughes, L.W.</td>
<td>336</td>
</tr>
<tr>
<td>Imshenetskii, A.</td>
<td>23,24,166</td>
</tr>
<tr>
<td>Irons, A.S.</td>
<td>140,167</td>
</tr>
<tr>
<td>Isenberg, H.D.</td>
<td>168</td>
</tr>
<tr>
<td>Iverson, W.P.</td>
<td>25</td>
</tr>
<tr>
<td>James, A.N., Jr.</td>
<td>169</td>
</tr>
<tr>
<td>Jet Propulsion Laboratory</td>
<td>Pasadena 170,171,172,173,174</td>
</tr>
<tr>
<td>Jones, A.</td>
<td>19</td>
</tr>
<tr>
<td>Jurevic, W.G.</td>
<td>253</td>
</tr>
<tr>
<td>Ju, F.</td>
<td>204</td>
</tr>
<tr>
<td>Kalfayan, S.H.</td>
<td>175</td>
</tr>
<tr>
<td>Kaplan, A.</td>
<td>176</td>
</tr>
<tr>
<td>Karpinski, J.Z.</td>
<td>26</td>
</tr>
<tr>
<td>Karpukhin, G.I.</td>
<td>27,177</td>
</tr>
<tr>
<td>Kemp, H.T.</td>
<td>14</td>
</tr>
<tr>
<td>Name</td>
<td>Page</td>
</tr>
<tr>
<td>---------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Kemper, K.M.</td>
<td>72</td>
</tr>
<tr>
<td>Keough, J.B.</td>
<td>28</td>
</tr>
<tr>
<td>Kereluk, K.</td>
<td>178,179</td>
</tr>
<tr>
<td>Kline, R.C.</td>
<td>180,272</td>
</tr>
<tr>
<td>Koch, A.L.</td>
<td>29</td>
</tr>
<tr>
<td>Kohlhase, C.E.</td>
<td>30</td>
</tr>
<tr>
<td>Komolova, G.S.</td>
<td>69</td>
</tr>
<tr>
<td>Kopelman, I.J.</td>
<td>31</td>
</tr>
<tr>
<td>Kosmo, J.J.</td>
<td>181</td>
</tr>
<tr>
<td>Koznovas, L.B.</td>
<td>228</td>
</tr>
<tr>
<td>Krushchev, V.G.</td>
<td>228</td>
</tr>
<tr>
<td>Kubasko, P.E.</td>
<td>15</td>
</tr>
<tr>
<td>Langer, A.</td>
<td>271</td>
</tr>
<tr>
<td>Lassegard, W.E.</td>
<td>182</td>
</tr>
<tr>
<td>LeDoux, F.N.</td>
<td>32</td>
</tr>
<tr>
<td>Lee, S.M.</td>
<td>18,183,184</td>
</tr>
<tr>
<td>Leighton, R.B.</td>
<td>185</td>
</tr>
<tr>
<td>Leovy, C.B.</td>
<td>185</td>
</tr>
<tr>
<td>Levin, G.V.</td>
<td>33,186</td>
</tr>
<tr>
<td>Levin, V.L.</td>
<td>34</td>
</tr>
<tr>
<td>Levitan, A.A.</td>
<td>324</td>
</tr>
<tr>
<td>Libby, W.F.</td>
<td>35,36</td>
</tr>
<tr>
<td>Lilja, H.S.</td>
<td>308</td>
</tr>
<tr>
<td>Lindell, K.F.</td>
<td>187,188,332</td>
</tr>
<tr>
<td>Liubarskii, K.A.</td>
<td>189</td>
</tr>
<tr>
<td>Lloyd, R.S.</td>
<td>178,179</td>
</tr>
<tr>
<td>Long, M.E.</td>
<td>102</td>
</tr>
<tr>
<td>Lorenz, P.R.</td>
<td>190</td>
</tr>
<tr>
<td>Lozina-Lozinskaia, L.K.</td>
<td>37,38,191</td>
</tr>
<tr>
<td>Lukens, S.C.</td>
<td>39,192,193,194</td>
</tr>
<tr>
<td>Lutwack, R.</td>
<td>195,196</td>
</tr>
<tr>
<td>MacLeod, N.H.</td>
<td>197,252</td>
</tr>
<tr>
<td>Marov, M.Ya.</td>
<td>198</td>
</tr>
<tr>
<td>Marr, A.G.</td>
<td>46</td>
</tr>
<tr>
<td>Marshall, J.H.</td>
<td>75,76</td>
</tr>
<tr>
<td>Martin Co., Denver</td>
<td>201</td>
</tr>
<tr>
<td>Martin, K.</td>
<td>199,200</td>
</tr>
<tr>
<td>Martin Marietta Corp., Denver</td>
<td>202</td>
</tr>
<tr>
<td>Marx, H.J.</td>
<td>203</td>
</tr>
<tr>
<td>Mason, H.P.</td>
<td>223</td>
</tr>
<tr>
<td>Mason, J.W.</td>
<td>204,222</td>
</tr>
<tr>
<td>Mauri, R.E.</td>
<td>205</td>
</tr>
<tr>
<td>Maxwell, W.A.</td>
<td>104</td>
</tr>
<tr>
<td>McDade, J.J.</td>
<td>55,206,336</td>
</tr>
<tr>
<td>McDonald, J.P.</td>
<td>40</td>
</tr>
<tr>
<td>McDonnell Astronautics Co., St. Louis, Mo.</td>
<td>41</td>
</tr>
<tr>
<td>McElhenn, E.A.</td>
<td>45</td>
</tr>
<tr>
<td>McKinney, R.</td>
<td>40</td>
</tr>
<tr>
<td>McLaren, A.D.</td>
<td>50</td>
</tr>
<tr>
<td>Meadows, A.J.</td>
<td>42</td>
</tr>
<tr>
<td>Mehrhoff, W.H.</td>
<td>13</td>
</tr>
<tr>
<td>Mellin, J.R.</td>
<td>64</td>
</tr>
<tr>
<td>Michelsen, G.S.</td>
<td>322,324</td>
</tr>
<tr>
<td>Miller, C.G.</td>
<td>207</td>
</tr>
<tr>
<td>Mitzi, M.A.</td>
<td>208</td>
</tr>
<tr>
<td>Moats, W.A.</td>
<td>209</td>
</tr>
<tr>
<td>Moritsugu, S.G.</td>
<td>78</td>
</tr>
<tr>
<td>Moriss, M.E.</td>
<td>334,336</td>
</tr>
<tr>
<td>Morrison, S.M.</td>
<td>77</td>
</tr>
<tr>
<td>Mortimer, A.R.</td>
<td>48</td>
</tr>
<tr>
<td>Mueller, R.F.</td>
<td>210</td>
</tr>
<tr>
<td>Mukherji, S.</td>
<td>9</td>
</tr>
<tr>
<td>Murray, B.C.</td>
<td>185</td>
</tr>
<tr>
<td>National Academy of Sciences, National Research Council Washington, D.C.</td>
<td>44</td>
</tr>
<tr>
<td>National Academy of Science, Space Science Board, Washington, D.C.</td>
<td>43</td>
</tr>
<tr>
<td>National Aeronautics and Space Administration, Washington, D.C. 211,212,213,214</td>
<td></td>
</tr>
<tr>
<td>National Communicable Disease Center, Atlanta 215,216,217,218</td>
<td></td>
</tr>
<tr>
<td>Neill, A.H.</td>
<td>219,220</td>
</tr>
<tr>
<td>Nelson, B.A.</td>
<td>221</td>
</tr>
<tr>
<td>Nishikawa, S.</td>
<td>73</td>
</tr>
<tr>
<td>O'Connell, J.J.</td>
<td>45</td>
</tr>
<tr>
<td>Olson, C.A.</td>
<td>45</td>
</tr>
<tr>
<td>Opfell, J.B.</td>
<td>204,222</td>
</tr>
<tr>
<td>Orlob, G.B.</td>
<td>190</td>
</tr>
<tr>
<td>Owen, T.</td>
<td>223</td>
</tr>
<tr>
<td>Oxborrow, G.S.</td>
<td>224,240,241</td>
</tr>
</tbody>
</table>
Paik, W.W. 140,225,226,227
Painter, P.R. 46
Parker, J. 92
Pears, C.D. 47
Pershina, Z.G. 228
Petersen, N.J. 75,76, 229,230,231
Pettus, J.D. 64,99
Pflug, I.J. 31,118,232,323
Phillips, G.B. 6,206,233,234,262
Podlaseck, S.E. 89
Popat, P.V. 235,236,237
Portner, D.M. 238,239
Puleo, J.R. 224,230,240,241
Pyron, C.M., Jr. 47
Quinn, E.A. 242
Randolph, P.L. 180
Read, R.B., Jr. 243,244,245,246
Redmann, G.H. 136,247,299,300
Renninger, G.M. 298
Reynolds, M.C. 248,249,250,251
Rich, E. 252
Rittenhouse, J.B. 253
Roark, A.L. 254,255,256
Roper, W.D. 257,258,259
Rowe, J.A. 260
Rubin, E.J. 235,236
Rueter, A. 261
Ruffing, C.R. 271
Runkle, R.S. 262
Rymarz, T.M. 263
Sabel, F.L. 55
Sagan, C. 264
Salomon, L.L. 48
Sandia Corp., Albuquerque 265,266,267,268,269
Saunders, J.F. 270
Scala, C.L. 271
Schalkowsky, S. 272,273,274, 275,276,277,278,279
Schenk, V.G. 182
Schleicher, J.B. 261
Seiders, R.W. 3
Sharp, R.P. 185
Sheimmel, J.E. 239
Sherry, E.J. 140,226,227,280,281
Shrago, E. 317
Shuford, D.M. 40
Shulman, G.P. 162
Silverman, G.J. 260
Simmonds, P.G. 162
Simoneit, B.R. 282
Singer-General Precision, Inc., Wayne, N.J. 49
Sivinski, H.D. 206,283,284, 285,286,287,335
Skujins, J.J. 50
Slobodenyuk, A.V. 27
Slobodenyuk, S.V. 177
Slobodenyuk, V.K. 27,177
Smith, B.A. 185
Smith, C.D. 226
Smith, G. 323
Smith, I.D. 282
Sobolev, S.M. 228
Sokolowski, M.B. 288,289
Sontowski, J.F. 102
Sorensen, R.W. 290
Sparhawk, H.E. 64
Spiner, D.R. 238,291
Spross, F.R. 292
Staat, R.H. 293
Steg, S.E. 294
Stern, J.A. 140,226,227
Stewart, R.W. 161
Steyn, J.J. 295
Stoffel, R.W. 64
Sundman, V. 51
Swenson, B.L. 296,297
Taylor, D.M. 136,298,299,300
Taylor, L.A. 2,3,301
Trauth, C.A., Jr. 85,302,303, 304,305
Trkula, D. 288,289
Truscillo, V.C. 207
Tucker, E.M. 181
Tucker, T.H. 64
Tulis, J.J. 306,307,308,309, 310,311,312,313,314,315,316
<table>
<thead>
<tr>
<th>Name</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Updike, S.J.</td>
<td>317</td>
</tr>
<tr>
<td>Useller, J.W.</td>
<td>318</td>
</tr>
<tr>
<td>Ushakov, A.S.</td>
<td>141</td>
</tr>
<tr>
<td>Ussery, Q.T.</td>
<td>319</td>
</tr>
<tr>
<td>Vandrey, J.F.</td>
<td>320</td>
</tr>
<tr>
<td>Vashkov, V.I.</td>
<td>321</td>
</tr>
<tr>
<td>Vereen, L.E.</td>
<td>77</td>
</tr>
<tr>
<td>Vershigora, A.Yu.</td>
<td>52</td>
</tr>
<tr>
<td>Vesley, D.</td>
<td>322,323,324</td>
</tr>
<tr>
<td>Viking Project Management</td>
<td>325</td>
</tr>
<tr>
<td>Vishniac, W.</td>
<td>326</td>
</tr>
<tr>
<td>Vlodavets, V.V.</td>
<td>53</td>
</tr>
<tr>
<td>von Hartmann, W.</td>
<td>195,327,328</td>
</tr>
<tr>
<td>Walker, R.J.</td>
<td>55</td>
</tr>
<tr>
<td>Wang, J.T.</td>
<td>156</td>
</tr>
<tr>
<td>Wardel, M.D.</td>
<td>298,300</td>
</tr>
<tr>
<td>Weneck, E.J.</td>
<td>288,289</td>
</tr>
<tr>
<td>West, W.S.</td>
<td>329</td>
</tr>
<tr>
<td>Westberg, K.</td>
<td>162</td>
</tr>
<tr>
<td>Weston, C.R.</td>
<td>338</td>
</tr>
<tr>
<td>Whitfield, W.J.</td>
<td>54,188,206,330,331,332,333,334,335,336</td>
</tr>
<tr>
<td>Willard, M.T.</td>
<td>8</td>
</tr>
<tr>
<td>Williamsen, C.T.</td>
<td>337</td>
</tr>
<tr>
<td>Wrighton, C.</td>
<td>19</td>
</tr>
<tr>
<td>Yang, J.N.</td>
<td>338</td>
</tr>
<tr>
<td>Yegorov, I.A.</td>
<td>69</td>
</tr>
<tr>
<td>Yoshida, T.</td>
<td>77</td>
</tr>
<tr>
<td>Young, A.T.</td>
<td>185</td>
</tr>
<tr>
<td>Youngblood, H.H.</td>
<td>339,340</td>
</tr>
</tbody>
</table>
PERMUTED TITLE INDEX

ABSORPTION-DESORPTION
of water by bacterial spores and its relation to dry heat re

ACCELEROMETERS
Development of a sterilizable performance
Investigation of sterilizable high performance
Sterilizable inertial sensor high performance

ADENOSINE TRIPHOSPHATE
assay of terrestrial soils—a test of an exobiological experi
Automated microbial metabolism laboratory/
Bacterial contamination monitor, patent application/

ADHESIVES
Adhesives/

AEROSOL(S)
and bacterial aerosols/Evaluation of air filters with submic
Contamination control handbook/
Design requirements for laminar airflow clean rooms and devi
in a microbiological safety cabinet/Containment of microbial
in the dust phase/Experimental model of a bacterial
Life in extraterrestrial environments/
Life in extraterrestrial environments/
method of disinfection in viral infections. I. Technique of
microbiological evaluation of the vacuum probe surface sampl
Microorganisms removed from contaminated stainless steel by
of viable particles of different sizes/Production of
physics studies/Fine particle and
Planetary quarantine program/
Principles and applications of laminar-flow devices/
Reduction of microbial dissemination/ 13th SRP
Reduction of microbial dissemination germicidal activity of
stabilizers as substitutes for bound water: a study of an
stabilizers as substitutes for bound water: an in vitro mode
Study of aseptic maintenance by pressurization/
Study of the application of laminar flow ventilation to oper

AEROSPACE ACTIVITIES
1966-2066/Law for

AIR
filters with submicron viral aerosols and bacterial aerosols
incinerator/Microbiological evaluation of a large volume
sampling/Advances in large-volume
(sampling) Effectiveness of laminar air flow for controlling

AIRBORNE CONTAMINATION
Effectiveness of laminar air flow for controlling

ALCOHOL
sporulation method/Evaluation of

-50-
<table>
<thead>
<tr>
<th>AMBIENT WATER ACTIVITY</th>
<th>ANALYSIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>use of membrane filter support for test organisms/Long-term</td>
<td></td>
</tr>
<tr>
<td>Abundance of microflora in soils of desert regions/</td>
<td>93</td>
</tr>
<tr>
<td>Antarctic dry valley soil microbial incubation and gas compo</td>
<td>94</td>
</tr>
<tr>
<td>Apollo lunar module engine exhaust products/</td>
<td>282</td>
</tr>
<tr>
<td>Atmospheres of Mars and Venus/The</td>
<td>121</td>
</tr>
<tr>
<td>Biostatistics and space exploration: microbiology and steril</td>
<td>112</td>
</tr>
<tr>
<td>Biostatistics and space exploration: microbiology and steril</td>
<td>113</td>
</tr>
<tr>
<td>conceptual design study of a terminal sterilization chamber</td>
<td>60</td>
</tr>
<tr>
<td>Continuation of the development of a typical Mars landing ca</td>
<td>63</td>
</tr>
<tr>
<td>Development and application of a system model for spacecraft</td>
<td>122</td>
</tr>
<tr>
<td>Development of a laminar airflow biological cabinet/</td>
<td>55</td>
</tr>
<tr>
<td>Dry heat inactivation characteristics of Bacillus subtilis</td>
<td>293</td>
</tr>
<tr>
<td>Effects of decontamination sterilization, and thermal vacuum</td>
<td>257</td>
</tr>
<tr>
<td>evaluation and refinement of a mathematical model for the st</td>
<td>16</td>
</tr>
<tr>
<td>Evaluation of a quantal response model with variable concen</td>
<td>114</td>
</tr>
<tr>
<td>Experimental heat chamber for sterilization of large interpl</td>
<td>79</td>
</tr>
<tr>
<td>Experimental heat chamber for sterilization of large interpl</td>
<td>81</td>
</tr>
<tr>
<td>Heat sterilizable pH electrodes/</td>
<td>176</td>
</tr>
<tr>
<td>Heat sterilizable, remotely activated battery development pr</td>
<td>119</td>
</tr>
<tr>
<td>Implementation of a chemical contaminant inventory for lunar</td>
<td>123</td>
</tr>
<tr>
<td>Martian scene/</td>
<td>155</td>
</tr>
<tr>
<td>Mathematical model of the effect of a predator on species di</td>
<td>338</td>
</tr>
<tr>
<td>Method for determining virus on surfaces contaminated by vir</td>
<td>177</td>
</tr>
<tr>
<td>Microbiological evaluation of the vacuum probe surface sampl</td>
<td>229</td>
</tr>
<tr>
<td>Microbiological profiles Apollo 7, 8, and 9 spacecraft/</td>
<td>240</td>
</tr>
<tr>
<td>Microbiology studies/</td>
<td>165</td>
</tr>
<tr>
<td>Planetary quarantine</td>
<td>280</td>
</tr>
<tr>
<td>RTG radiation test laboratory/</td>
<td>97</td>
</tr>
<tr>
<td>Services provided in support of the planetary quarantine req</td>
<td>129</td>
</tr>
<tr>
<td>Services provided in support of the planetary quarantine req</td>
<td>130</td>
</tr>
<tr>
<td>Services provided in support of the planetary quarantine req</td>
<td>231</td>
</tr>
<tr>
<td>Severe planetary environments and their implications on tech</td>
<td>125</td>
</tr>
<tr>
<td>Space programs summary no. 37-55, vol. 3/</td>
<td>172</td>
</tr>
<tr>
<td>Spacecraft component survivability during entry into the Mar</td>
<td>296</td>
</tr>
<tr>
<td>Spearman simultaneous estimation for a compartmental model/</td>
<td>67</td>
</tr>
<tr>
<td>Stability of viruses in foods for spaceflights/</td>
<td>107</td>
</tr>
<tr>
<td>Sterile soil from Antarctica: organic</td>
<td>162</td>
</tr>
<tr>
<td>Sterilization/</td>
<td>117</td>
</tr>
<tr>
<td>Sterilization and thermal-vacuum effects on spacecraft polym</td>
<td>259</td>
</tr>
<tr>
<td>Study of the thermal kill of viable organisms during Mars at</td>
<td>92</td>
</tr>
<tr>
<td>Technology feasibility spacecraft thermal math modeling term</td>
<td>164</td>
</tr>
<tr>
<td>Unmanned spacecraft RTG shield optimization study/</td>
<td>295</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ANTARCTIC</th>
<th>APOLLO</th>
</tr>
</thead>
<tbody>
<tr>
<td>dry valley soil microbial incubation and gas composition/</td>
<td>94</td>
</tr>
<tr>
<td>organic analysis/Sterile soil from</td>
<td>162</td>
</tr>
<tr>
<td>7, 8, and 9 spacecraft/Microbiological profiles</td>
<td>240</td>
</tr>
<tr>
<td>9 Services provided in support of the planetary quarantine</td>
<td>128</td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>APOLLO (continued)</td>
<td></td>
</tr>
<tr>
<td>9 spacecraft/Microbial contamination detected on the</td>
<td></td>
</tr>
<tr>
<td>10 Ecology and thermal inactivation of microbes in and on in</td>
<td></td>
</tr>
<tr>
<td>10 Services provided in support of the planetary quarantine</td>
<td></td>
</tr>
<tr>
<td>10 Services provided in support of the planetary quarantine</td>
<td></td>
</tr>
<tr>
<td>10 and 11 spacecraft/Qualitative microbiological studies on</td>
<td></td>
</tr>
<tr>
<td>11 Ecology and thermal inactivation of microbes in and on in</td>
<td></td>
</tr>
<tr>
<td>11: Preliminary science report/</td>
<td></td>
</tr>
<tr>
<td>11 Services provided in support of the planetary quarantine</td>
<td></td>
</tr>
<tr>
<td>and contamination control Boeing's role/</td>
<td></td>
</tr>
<tr>
<td>and contamination control Grumman aircraft's role</td>
<td></td>
</tr>
<tr>
<td>and contamination control McDonnell Douglas's role/</td>
<td></td>
</tr>
<tr>
<td>and contamination control NASA's role/</td>
<td></td>
</tr>
<tr>
<td>and contamination control-Rocketdyne's role/</td>
<td></td>
</tr>
<tr>
<td>landing/Lunar atmospheric contamination due to an</td>
<td></td>
</tr>
<tr>
<td>lunar module engine exhaust products/</td>
<td></td>
</tr>
<tr>
<td>model for the quantification of the qualitative microbial sa</td>
<td></td>
</tr>
<tr>
<td>modules/The determination of quantitative microbial requirem</td>
<td></td>
</tr>
<tr>
<td>Planetary quarantine program/</td>
<td></td>
</tr>
<tr>
<td>Services provided in support of the planetary quarantine req</td>
<td></td>
</tr>
<tr>
<td>ASEPTIC MAINTENANCE</td>
<td></td>
</tr>
<tr>
<td>by pressurization/A study of</td>
<td></td>
</tr>
<tr>
<td>ASSAY</td>
<td></td>
</tr>
<tr>
<td>Contamination control training course outline/</td>
<td></td>
</tr>
<tr>
<td>effect of dimethyl sulfoxide on the sporidical activity of</td>
<td></td>
</tr>
<tr>
<td>Effect of relative humidity on survival of Bacillus subtilis</td>
<td></td>
</tr>
<tr>
<td>Methyl bromide as an aid to ethylene oxide sterilization/</td>
<td></td>
</tr>
<tr>
<td>Microbial contamination detected on the Apollo 9 spacecraft</td>
<td></td>
</tr>
<tr>
<td>Paraformaldehyde for surface sterilization and detoxificatio</td>
<td></td>
</tr>
<tr>
<td>Procedures for the microbiological examination of space hard</td>
<td></td>
</tr>
<tr>
<td>Quality assurance monitoring of the microbiological aspects</td>
<td></td>
</tr>
<tr>
<td>Reduction of microbial dissemination germicidal activity of</td>
<td></td>
</tr>
<tr>
<td>Release of microbial contamination from fractured solids/</td>
<td></td>
</tr>
<tr>
<td>study of aseptic maintenance by pressurization/</td>
<td></td>
</tr>
<tr>
<td>Vacuum probe: new approach to the microbiological sampling</td>
<td></td>
</tr>
<tr>
<td>buried biological contamination/An analytical basis for</td>
<td></td>
</tr>
<tr>
<td>ASSEMBLE - ASSEMBLY</td>
<td></td>
</tr>
<tr>
<td>Apollo and contamination control NASA's role/</td>
<td></td>
</tr>
<tr>
<td>areas/Dry heat inactivation kinetics of naturally occurring</td>
<td></td>
</tr>
<tr>
<td>Capsule system advanced development sterilization program/</td>
<td></td>
</tr>
<tr>
<td>Class 100 clean room program, preparation and initial operat</td>
<td></td>
</tr>
<tr>
<td>Dry heat destruction rates for microorganisms on open surfac</td>
<td></td>
</tr>
<tr>
<td>Experimental heat chamber for sterilization of large interpl</td>
<td></td>
</tr>
<tr>
<td>Experimental heat chamber for sterilization of large interpl</td>
<td></td>
</tr>
<tr>
<td>Experimental heat chamber for sterilization of large interpl</td>
<td></td>
</tr>
<tr>
<td>facility operations/Microbiological monitoring of spacecraft</td>
<td></td>
</tr>
<tr>
<td>Heat sterilizable and impact resistant Ni-Cd battery develop</td>
<td></td>
</tr>
<tr>
<td>Heat sterilizable and impact resistant Ni-Cd battery develop</td>
<td></td>
</tr>
<tr>
<td>in the sterilization assembly development laboratory/Biologi</td>
<td></td>
</tr>
<tr>
<td>Life in extraterrestrial environments/</td>
<td></td>
</tr>
</tbody>
</table>
ASSEMBLE – ASSEMBLY (continued)
Manufacturing aspects of technology feasibility spacecraft s 40
Mathematical models for contamination and pollution predicti 221
Microbial contamination detected on the Apollo 9 spacecraft/ 241
Planetary quarantine progress/ 219
Quality assurance monitoring of the microbiological aspects 136
Quality assurance requirements manual for planetary spacecra 138
Spacecraft sterilization training manual/ 242
Sterilizable liquid propulsion system, Part 2 final report/ 192
Sterilizable wide angle gas bearing gyro FGC3345/ 88
Sterilization and decontamination. I./ 183
Sterilization and decontamination. II./ 184
Stochastic math model/ 281
Vacuum probe: new approach to the microbiological sampling 336

ATMOSPHERE(S)
1973 Viking voyage to Mars/ 325
Apollo lunar module engine exhaust products/ 282
ATP assay of terrestrial soils—a test of an exobiological ex 197
Comparative evaluation of methods for the search for life on 166
Designing for the laminar flow environment/ 332
Effect of a simulated Martian environment on certain enzymes 69
Ethylene oxide sterilization, a current review of principles 178
Exospheric temperatures on Mars and Venus/ 161
Experimental heat chamber for sterilization of large interpl 79
Experimental heat chamber for sterilization of large interpl 80
Investigations into a diffusion model of dry heat sterilizat 65
Mariner-Mars 1969 a preliminary report/ 212
Mars-water vapor in its 223
Martian scene/ 155
Microbiological methods of testing the 52
of Mars and Venus/The 121
Origin of microbial life on earth and its implications for 168
(preliminary screening) Sterilizable polymeric materials/ 175
Resistance of the protozoan colpoda maupasi to Martian condi 191
Spacecraft sterilization by destructive heating/ 297
Television observations from Mariner 6 and 7/ 185

ATMOSPHERIC
contaminants by consideration of turbulent characteristics 20
contaminants in spacecraft/ 43
contamination due to an Apollo landing/Lunar 101
entry/A study of the thermal kill of viable organisms during 92
(models) Buoyant Venus station mission feasibility for 1972 64

ATP
SEE ADENOSINE TRIPHOSPHATE

AUTOMATED
microbial metabolism laboratory/ 186

AVIONICS
clean room/ 111

A_w
on the sporicidal activity of ethylene oxide/The effects of 179
BALL BEARINGgyroscope
motor sterilization program/C702543 Alpha III

BATTERY
development/heat sterilizable
development/heat sterilizable
development/heat sterilizable and impact resistant Ni-Cd
development/heat sterilizable and impact resistant Ni-Cd
development/heat sterilizable and impact resistant Ni-Cd
development/heat sterilizable Ni-Cd
Separator development for a heat sterilizable
separator/The application of bench tests in the development
separator/The application of bench tests in the development

BACK CONTAMINATION
Possible contamination of earth by lunar or Martian life/

BACTERIA
and viruses in liquids/The detection of
by light scattering measurements/The size and shape of
(colony count) New fast techniques for bioassay/
Ethylene oxide sterilization, a current review of principles
Germicidal activity of ethylene oxide/14th SRP
Influence of the dose rate and time factor on the bactericidal
Life in extraterrestrial environments/
Mathematical model of the effect of a predator on species di
Natural selection of microorganisms in extreme environments/
Planetary quarantine program/
Systematic description and key to isolants from Chile-Ataca

BACTERIAL
aerosol in the dust phase/Experimental model of a
(aerosols) Containment of microbial aerosols in a microbiological
Aerosols/Evaluation of air filters with submicron viral aero
(aerosols) Long-term bactericidal effects of reduced ambient
(aerosols) Microbiological evaluation of a large volume air
(aerosols) Microbiological methods of testing the atmosphere
contamination monitor, patent application/
contamination of hard surfaces in the operating room/Control
inactivation/Kinetic model of
populations by means of factor profiles/Characterization of
response to the soil environment/
spores and its relation to dry heat resistance/The absorbtionof
spores as a spore control procedure/Limitations of the initi
spores from spacecraft assembly areas/Dry heat inactivation

BACTERICIDAL
effect of radiation/Influence of the dose rate and time fact
effects of reduced ambient water activity: use of membrane fi

BIBLIOGRAPHY
Scientific publications and presentations relating to planet

BIOASSAY
Bacterial contamination monitor, patent application/
Class 100 clean room program, preparation and initial operat
Clean room facilities for Explorer 35 spacecraft
Contamination control and sterilization in space programs/

-54-
Continuation of the development of a typical Mars landing ca
Continuation of the development of a typical Mars landing ca
Development of a laminar airflow biological cabinet/
Effect of a simulated Martian environment on certain enzymes
Evaluation of new penetrating sporicide potentially useful i
Microbiology quality activities for a planetary mission/
Natural selection of microorganisms in extreme environments/
New fast techniques for
of spacecraft/Development of new and improved techniques for
Planetary quarantine and spacecraft sterilization/
program/Manufacturing aspects of technology feasibility spac
Quality assurance requirements manual for planetary spacecra
Spacecraft sterilization/
Sterilizable liquid propulsion system, Part 2 final report/
(techniques) Possible contamination of earth by lunar or Mar
A study of the possible movement of microorganisms through
Application of laminar flow rooms to patient isolation/
Biostatistics and space exploration: microbiology and steril
Effect of air velocity on bioccontamination in a laminar cros
in controlled environments/Predicting
Manufacturing aspects of technology feasibility spacecraft
Microbiological monitoring of spacecraft facility operations
Planetary quarantine program/
Planetary quarantine program/
Planetary quarantine progress/
Stochastic math model/
Experiments and instrumentation for extraterrestrial life
in a laminar crossflow room/Effect of air velocity on
Analytical basis for assaying buried biological contaminatio
Comments on the in-flight recontamination hazards/
Immediate and future challenges to contamination control tec
Mathematical models for contamination and pollution predicti
Planetary quarantine program/
Planetary quarantine program/
Potential effects of recent findings on spacecraft steriliza
Procedures for the microbiological examination of space hard
Quality assurance monitoring of the microbiological aspects
Quality assurance requirements manual for planetary spacecra
Sterilization and decontamination techniques for space vehic
Study program on the development of mathematical model(s) fo
burden during spacecraft assembly/Effect of environment on
cabinet/Development of a laminar airflow
(contamination control) Interplanetary spacecraft decontamin
experimentation-methods and results/
BIOLOGICAL (continued)
indicators in sterilization/Proper use of isolation garment, patent application/monitoring of the capsule mechanical training model during

BIOMETRY
Spearman simultaneous estimation for a compartmental model/

BIOPHYSICS
to spacecraft sterilization/Some applications of

BIOSTATISTICS
and space exploration: microbiology and sterilization/
and space exploration: microbiology and sterilization/

BIOTECHNOLOGY
Scientific publications and presentations relating to planet sterilization requirements, operational procedures, facilities

BURIED CONTAMINATION
An analytical basis for assaying
Biostatistics and space exploration: microbiology and sterilization
Ecology and thermal inactivation of microbes in and on inter
Ecology and thermal inactivation of microbes in and on inter
Evaluation of a quantal response model with variable concentration
Evaluation of new penetrating sporicide potentially useful
Investigation of methods for the sterilization of potting containers
Microorganisms, alive and imprisoned in a polymer cage/
Planetary quarantine program/
Potential effects of recent findings on spacecraft sterilization
Release of microbial contamination from fractured solids/
Spacecraft sterilization by destructive heating/

CAPSULE SYSTEM
advanced development sterilization program/

CARBOHYDRATE REQUIREMENTS
Characterization of bacterial populations by means of factor profiles/

CARBON DIOXIDE
1973 Viking project management/
Apollo lunar module engine exhaust products/
chemical, biochemical, and physiological aspects/
Exospheric temperatures on Mars and Venus/

CARBON MONOXIDE
Apollo lunar module engine exhaust products/

CELLULAR MORPHOLOGY
The size and shape of bacteria by light scattering measurements

CHARACTERIZATION
of bacterial populations by means of factor profiles/

CHEMICAL
1973 Viking voyage to Mars/
Apollo lunar module engine exhaust products/
Application of bench tests in the development of heat-sterilization
Application of bench tests in the development of heat-sterilization
CHEMICAL (continued)

Contaminant inventory for lunar missions/Implementation of a
Heat sterilizable battery development/ 123
Investigation of methods for the sterilization of potting co
Sterilization/ 196
CLASS 100 CLEAN ROOM PROGRAM
Preparation and initial operations/ 307
CLEAN ASSEMBLY
and sterilization laboratory/ 117
CLEAN ROOM(S)
and devices/Design requirements for laminar airflow 110
Apollo and contamination control Boeing's role/ 188
Apollo and contamination control-Rocketdyne's role/ 109
Avionics 100
Clean assembly and sterilization laboratory/ 111
Contamination control. A state-of-the-art review/ 110
Effect of environment on biological burden during spacecraft 54
facilities for Explorer 35 spacecraft/ 300
HEPA:LAF environmental control at Riken laboratories/ 32
Mathematical models for contamination and pollution predicti 137
Monitoring for particle contamination on surfaces with the 221
personnel/ 334
Planetary quarantine program/ 58
Planetary quarantine progress/ 268
Principles and applications of laminar-flow devices/ 219
program, preparation and initial operations/Class 100 206
Quality assurance monitoring of the microbiological aspects 136
Study of the application of laminar flow ventilation to oper 132
techniques/Development of laminar flow 331
technology/ 318
Traditional concepts for contamination control/ 234
Vacuum probe: new approach to the microbiological sampling 336
vital element in contamination control/The 248
COMPARTMENTAL MODEL
Spearman simultaneous estimation for a 67
COMPATIBILITY
Effects of decontamination sterilization, and thermal vacuum 257
RTG radiation test laboratory/ 97
Sterilization and thermal-vacuum effects on spacecraft polym 259
COMPONENTS
Application of bench tests in the development of heat-steril 327
Application of bench tests in the development of heat sterili 328
(assembly) Clean room facilities for Explorer 35 spacecraft/ 32
(assembly) Sterilization requirements, operational procedure 17
Clean assembly and sterilization laboratory/ 110
Clean room technology/ 318
Considerations for contamination control/ 203
Designing for the laminar flow environment/ 332
Development and application of a system model for spacecraft 122
Development of a sterilizable high-performance accelerometer 146
Development of high resolution, high stability sterilizable 26
CONTAMINANT(S)
distribution study/in spacecraft/Atmospheric
CONTAMINATED
by virus aerosols/Method for determining virus on surfaces/
stainless steel by laminar airflow/
surfaces/Analytical study of the products of collision of 1
CONTAMINATION
and pollution prediction/Mathematical models1 for
Apollo lunar module engine exhaust products/
Biological losses and the quarantine policy for Mars/
control/5 year forecast for
Design requirements for laminar airflow clean rooms and devi
Development of a laminar airflow biological cabinet/
due to an Apollo landing/Lunar atmospheric
Ecology and thermal inactivation of microbes in and on inter
Effectiveness of laminar airflow for controlling airborne
Evaluation of alcohol sporulation method/
HEPA:LAF environmental control at Riken laboratories/
Manufacturing aspects of technology feasibility spacecraft
Microbiological control of radiation sterilization of medica
Microbiology quality activities for a planetary mission/
of earth by lunar or Martian life/Possible
of space with terrestrial life/Discussion of a possible
of spacecraft materials/Evaluation and refinement of a math
on surfaces with the vacuum probe sampler/Monitoring for par
Planetary quarantine progress/
Planetary quarantine provisions for unmanned planetary missi
Principles and applications of laminar-flow devices/
Quality assurance requirements manual for planetary spacecra
Rational model for spacecraft sterilization requirements/
Reduction of microbial dissemination and germicidal activity
Services provided in support of the planetary quarantine req
Services provided in support of the planetary quarantine req
Services provided in support of the planetary quarantine req
Spacecraft component survivability during entry into the Mar
Spacecraft sterilization/
Stability of viruses in foods for spaceflights/
Study of the application of laminar flow ventilation to oper
Study of the thermal kill of viable organisms during Mars atm
CONTAMINATION CONTROL
after terminal sterilization/Microbial
and sterilization in space programs/
Approach to understanding the basic physics involved in meet
Avionics clean room/
Boeing's role/Apollo and
Clean room—a vital element in
Clean room facilities for Explorer 35 spacecraft
Clean room technology/
Considerations for
Designing for the laminar flow environment/
DECONTAMINATION (continued)
Effects of exposure of electronic assemblies to ethylene oxi 18
Environmental microbiology as related to planetary quarantin 74
Manufacturing aspects of technology feasibility spacecraft 40
operations and equipment/Interplanetary spacecraft 8
Quality assurance requirements manual for planetary spacecra 138
Sterilizable liquid propulsion system/ 39
sterilization, and thermal vacuum on spacecraft polymeric pr 257
Sterilization requirements, operational procedures, faciliti 17
techniques for space vehicles/Sterilization and 10
Testing a sterilizable liquid propulsion system/ 28
Ways and means of reducing to a minimum microflora in small 321

DEHYDRATION
Effects of high intensity visible and ultraviolet light on 104

DESERT
microflora/ 95
regions/Abundance of microflora in soils of 93
soils/Systematic description and key to streptomyces isolant 73

DESIGN
Apollo and contamination control Boeing's role/ 109
Approach to understanding the basic physics involved in meet 15
Buoyant Venus station mission feasibility study for 1972 and 64
Clean assembly and sterilization laboratory/ 110
Clean room technology 318
Comments on the in-flight recontamination hazards/ 320
Contamination control handbook/ 265
Development of a laminar airflow biological cabinet/ 55
Development of the sterile insertion heat sealing tool and 201
Experimental heat chamber for sterilization of large interpl 81
Experimental heat chamber for sterilization of large interpl 82
Experimental heat chamber for sterilization of large interpl 83
Experimental heat chamber for sterilization of large interpl 152
Experimental heat chamber for sterilization of large interpl 154
Extravehicular tunnel suit system, patent application/ 181
for the laminar flow environment/ 332
Heat sterilizable and impact resistant Ni-Cd battery develop 235
Heat sterilizable and impact resistant Ni-Cd battery develop 236
Heat sterilizable battery development/ 195
Heat sterilizable battery development/ 196
Heat sterilizable, remotely activated battery development pr 119
Interplanetary spacecraft decontamination operations and equ 8
Microbial contamination control facilities/ 262
Model for the quantification of the qualitative microbial sa 254
requirements for laminar airflow clean rooms and devices/ 188
Severe planetary environments and their implications on tech 125
Space programs summary no. 37-58, vol. 3/ 173
Sterilizable liquid propulsion system/ 39
Sterilizable liquid propulsion system, part 2 final report/ 192
Sterilizable liquid propulsion system/ QPR 193
Sterilizable liquid propulsion system/ QPR 194
Sterilizable polymeric materials/ 175
Study of a terminal sterilization chamber for interplanetary 60
Traditional concepts for contamination control/ 234
Vacuum probe: new approach to the microbiological sampling 336
DESORPTION
of water by bacterial spores and its relation to dry heat re

DETECTION
of bacteria and viruses in liquids/The
of extraterrestrial life/Problems in

DETOXIFICATION
Elimination of toxicity from polyvinyl trays after steriliza
Paraformaldehyde for surface sterilization and

DEVICES
Advances in large-volume air sampling/
Bacterial contamination monitor, patent application/
Monitoring for particle contamination on surfaces with vacuu
New fast techniques for bioassay/
Sterilizable liquid propulsion system/ QPR
Vacuum probe: new approach to the microbiological sampling

DIFFUSION
model of dry heat sterilization/Investigations into a
of atmospheric contaminants by consideration of turbulent
Relationship of the surface mass average and geometric cente

DIMETHYL SULFOXIDE
Evaluation of new penetrating sporicide potentially useful
on the sporidical activity of ethylene oxide gas/Effect of

DISTRIBUTION
D_{125C} values for spore isolates from the Mariner '69 spacecra

DOSE RATE
and time factor on the bactericidal effect of radiation/Influ

DRY HEAT STERILIZATION
1973 Viking voyage to Mars/
and decontamination techniques for space vehicles/
compatibility of growth media for extraterrestrial use/
Contamination control and sterilization in space programs/
destruction of Bacillus subtilis var. niger spores on surfac
destruction rates for microorganisms on open surfaces, in
Development of the sterile insertion heat sealing tool and
Ecology and thermal inactivation of microbes in and on inter
Effects of sterilization and vacuum exposure on potential he
Environmental microbiology as related to planetary quarantin
environmental testing of initiators/
inactivation characteristics of Bacillus subtilis var. niger
inactivation kinetics of naturally occurring and subcultured
Integrated lethality of sterilization temperatures profiles/
Investigations into a diffusion model of
Microbial contamination control facilities/
Phase II of a sterilization and storage compatibility study
Planetary quarantine and spacecraft sterilization/
Planetary quarantine presentation/
Planetary quarantine program/
Potential effects of recent findings on spacecraft steriliza
Procedures for the microbiological examination of space hard
Quality assurance monitoring of the microbiological aspects
requirements, operational procedures, facilities and hardwar
DRY HEAT STERILIZATION (continued)

resistance/Absorption-desorption of water by bacterial spore resistance of Bacillus subtilis var. niger spores/Effects of Review of heat specifications/
Services provided in support of the planetary quarantine req Services provided in support of the planetary quarantine req Services provided in support of the planetary quarantine req Sterilizable liquid propulsion system, part 2 final report/
Sterilizable liquid propulsion system/QPR Sterilizable polymers/
Sterilization/
Testing a sterilizable liquid propulsion system/
Thermal death of Bacillus subtilis var. niger spores on sele

D VALUE(S)

D125C values for spore isolates from the Mariner '69 spacecr
Dry heat destruction rates for microorganisms on open surfac
Ecology and thermal inactivation of microbes in and on inter
Effect of humidity on the dry heat destruction of Bacillus s
Effects of pressure on the dry heat resistance of Bacillus s
Germicidal activity of ethylene oxide/ 14th SRP
Parametric study to determine time-temperature-vacuum relati
Parametric study to determine time-temperature-vacuum relati
Services provided in support of the planetary quarantine req
Services provided in support of the planetary quarantine req
Services provided in support of the planetary quarantine req
Services provided in support of the planetary quarantine req
Thermal death of Bacillus subtilis var. niger spores on sele

EARTH
by lunar or Martian life/Possible contamination of
ECOLOGY
and thermal inactivation of microbes in and on interplanetar
and thermal inactivation of microbes in and on interplanetar
and thermal inactivation of microbes in and on interplanetar
and thermal inactivation of microbes in and on interplanetar
Biological experimentation-methods and results/
Comparative evaluation of methods for the search for life on
Cryobiologist's conjecture of planetary life/
Desert microflora/
Frontiers in solar system exobiology/
Soil moisture, relative humidity, and microbial abundance in

ELECTRONIC
assemblies to ethylene oxide and heat sterilization/Effect
(equipment) Clean room facilities for Explorer 35 spacecraft

EMPIRICAL MODEL
Predicting diffusion of atmospheric contaminants by consider

ENCAPSULATED
in solids of spacecraft hardware/Dry heat destruction rates
ENVIRONMENT(S)

1973 Viking voyage to Mars/
Absorption and desorption of ethylene oxide/
Absorption-desorption of water by bacterial spores and its
Adhesives/
Apollo 11: Preliminary science report/
Approach to understanding the basic physics involved in meet
Atmosphere of Mars and Venus/
Atmospheric contaminants in spacecraft/
Automated microbial metabolism laboratory/
Avionics clean room/
Bacterial response to the soil/
Biochemical bases for life in extraterrestrial
Buoyant Venus station mission feasibility study for 1972 and
Clean room facilities for Explorer 35 spacecraft/
Clean room personnel/
Comparative evaluation of methods for the search for life
Conceptual design study of a terminal sterilization chamber
Contamination control. A state-of-the-art review/
Control of microbiological hazards in the laboratory/
Cryobiologist's conjecture of planetary life/
Desert microflora/
Designing for the laminar flow
Determination of quantitative microbial sampling requirement
Development of a laminar airflow biological cabinet/
Discussion of a possible contamination of space with terrest
Ecology and thermal inactivation of microbes in and on inter
Effect of \(\delta \) on the sporicidal activity of ethylene oxide/
Effect of decontamination sterilization, and thermal vacuum
Effect of dry heat destruction of Bacillus subtilis var. nig
Effect of high intensity visible and ultraviolet light on de
Effect of hyperoxia upon microorganisms. I. Membrane culture
Effect of pressure on the dry heat resistance of Bacillus su
Effectiveness of laminar air flow for controlling airborne
Evaluation of new penetrating sporicide potentially useful
Exobiology: the search for extraterrestrial life/
Extravehicular tunnel suit system, patent application/
Frontiers in solar system exobiology/
Fundamentals of mathematical modeling of planetary atmospher
Germicidal activity of ethylene oxide/ 14th SRP
Heat sterilizable and impact resistant Ni-Cd battery develop
Ice caps on Venus/
Integrated lethality of sterilization temperature profiles/
Interplanetary spacecraft decontamination operations and equ
Investigations into a diffusion model of dry heat sterilizat
Investigations of methods for the sterilization of potting
Life in extraterrestrial
Life in extraterrestrial
Life in space/
Lunar atmospheric contamination due to an Apollo landing/
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Martian scene/</td>
<td>155</td>
</tr>
<tr>
<td>Mathematical model of the effect of a predator on species di</td>
<td>338</td>
</tr>
<tr>
<td>Matrix test of sterilizable piece-parts/</td>
<td>199</td>
</tr>
<tr>
<td>Microbial contamination control after terminal sterilization</td>
<td>340</td>
</tr>
<tr>
<td>Microbial contamination detected on the Apollo 9 spacecraft/</td>
<td>241</td>
</tr>
<tr>
<td>Microbiological methods of testing the atmosphere/</td>
<td>52</td>
</tr>
<tr>
<td>Microbiological monitoring of spacecraft assembly facility</td>
<td>106</td>
</tr>
<tr>
<td>Microbiology studies/</td>
<td>165</td>
</tr>
<tr>
<td>Model for the quantification of the qualitative microbial</td>
<td>254</td>
</tr>
<tr>
<td>Monitoring for particle contamination on surfaces with the</td>
<td>334</td>
</tr>
<tr>
<td>Natural selection of microorganisms in extreme</td>
<td>57</td>
</tr>
<tr>
<td>on biological burden during spacecraft assembly/Effect of</td>
<td>300</td>
</tr>
<tr>
<td>Phase II of a sterilization and storage compatibility study</td>
<td>204</td>
</tr>
<tr>
<td>Planetary probe-origin of atmosphere of Venus/</td>
<td>210</td>
</tr>
<tr>
<td>Planetary quarantine and spacecraft sterilization/</td>
<td>124</td>
</tr>
<tr>
<td>Planetary quarantine presentation/</td>
<td>170</td>
</tr>
<tr>
<td>Possibility of survival of terrestrial organisms under Marti</td>
<td>34</td>
</tr>
<tr>
<td>Possible contamination of earth by lunar or Martian life/</td>
<td>57a</td>
</tr>
<tr>
<td>Predicting diffusion of atmospheric contaminants by consider</td>
<td>20</td>
</tr>
<tr>
<td>Quality assurance monitoring of the microbiological aspects</td>
<td>136</td>
</tr>
<tr>
<td>Reduction of microbial dissemination and germicidal activity</td>
<td>215</td>
</tr>
<tr>
<td>Resistance of organisms to extreme influences in relation to</td>
<td>38</td>
</tr>
<tr>
<td>Review of heat specifications/</td>
<td>225</td>
</tr>
<tr>
<td>Services provided in support of the planetary quarantine req</td>
<td>231</td>
</tr>
<tr>
<td>Soil moisture, relative humidity, and microbial abundance in</td>
<td>96</td>
</tr>
<tr>
<td>Space programs summary no. 37-58, vol. 3/</td>
<td>173</td>
</tr>
<tr>
<td>Stability of viruses in foods for spaceflights/</td>
<td>107</td>
</tr>
<tr>
<td>Sterile soil from Antarctica: organic analysis/</td>
<td>162</td>
</tr>
<tr>
<td>Sterilizable inertial sensors: high performance accelerometer</td>
<td>150</td>
</tr>
<tr>
<td>Sterilizable liquid propulsion system/ QPR</td>
<td>193</td>
</tr>
<tr>
<td>Sterilizable polymeric materials/</td>
<td>175</td>
</tr>
<tr>
<td>Sterilizable polymers/</td>
<td>258</td>
</tr>
<tr>
<td>Sterilizable wide angle gas bearing gyro FGG3345/</td>
<td>88</td>
</tr>
<tr>
<td>Sterilization and thermal-vacuum effects on spacecraft polym</td>
<td>259</td>
</tr>
<tr>
<td>Study of the application of laminar flow ventilation to oper</td>
<td>132</td>
</tr>
<tr>
<td>Study of thermal kill of viable organisms during Mars atmosp</td>
<td>92</td>
</tr>
<tr>
<td>Survival of microorganisms in space/</td>
<td>190</td>
</tr>
<tr>
<td>Television observations from Mariner 6 and 7/</td>
<td>185</td>
</tr>
<tr>
<td>Thermal death of Bacillus subtilis var. niger spores on sele</td>
<td>227</td>
</tr>
<tr>
<td>Traditional concepts for contamination control/</td>
<td>234</td>
</tr>
<tr>
<td>Vacuum probe: new approach to the microbiological sampling</td>
<td>336</td>
</tr>
<tr>
<td>ENVIRONMENTAL</td>
<td></td>
</tr>
<tr>
<td>microbiology as related to planetary quarantine/</td>
<td>74</td>
</tr>
<tr>
<td>testing of initiators/Sterilization</td>
<td>70</td>
</tr>
<tr>
<td>ENZYME</td>
<td></td>
</tr>
<tr>
<td>activity in terrestrial soil in relation to exploration of</td>
<td>50</td>
</tr>
</tbody>
</table>
EQUIPMENT

Advances in large-volume air sampling/ 116
Antarctic dry valley soil microbial incubation and gas compo 94
Apollo and contamination control Boeing's role/ 109
Biological isolation garment, patent application/ 292
Clean assembly and sterilization laboratory/ 110
Clean room technology/ 318
Conceptual design study of a terminal sterilization chamber 60
Control of microbiological hazards in the laboratory/ 233
Design requirements for laminar airflow clean rooms and devi 188
Designing for the laminar flow environment/ 332
Development of a laminar airflow biological cabinet/ 55
Ecology and thermal inactivation of microbes in and on inter 246
Effect of A_w on the sporicidal activity of ethylene oxide/ 179
Elimination of toxicity from polyvinyl trays after steriliza 261
Experimental heat chamber for sterilization of large interpl 79
Experimental heat chamber for sterilization of large interpl 80
Experimental heat chamber for sterilization of large interpl 82
Experimental heat chamber for sterilization of large interpl 152
Experimental heat chamber for sterilization of large interpl 153
Experimental heat chamber for sterilization of large interpl 154
Extravehicular tunnel suit system, patent application/ 181
Immediate and future challenges to contamination control tec 120
Interactions between radiation fields from RTGs and scientif 207
Interplanetary spacecraft decontamination operations and 8
Microbial contamination control facilities/ 262
Microbiological control of radiation sterilization of medica 9
Paraformaldehyde for surface sterilization and detoxificatio 301
Principles and applications of laminar-flow devices/ 206
Resistance of the protozoon colpoda maupasi to Martian condi 191
Sterile access studies in the pilot assembly sterilization 126
Sterilization and decontamination. I./ 183
Sterilization and decontamination. II./ 184
Sterilization-assembly development laboratory facility descri 247
Sterilization-environmental testing of initiators/ 70
Technological feasibility spacecraft thermal math modeling term 22

ETHYLENE OXIDE

C702543 Alpha III ball bearing gyroscope motor sterilization 49
Absorption and desorption of 143
and heat sterilization/Effects of exposure of electronic asse 18
(compatible) Sterilizable liquid propulsion system developme 142
Contamination control and sterilization in space programs/ 220
Development of the sterile insertion heat sealing tool and 201
Effect of A_w on the sporicidal activity of 179
Effect of decontamination sterilization, and thermal vacuum 257
Effect of dimethyl sulfoxide on the sporicidal activity of 291
Elimination of toxicity from polyvinyl trays after steriliza 261
Evaluation of new penetrating sporicide potentially useful 56
Germicidal activity of/ 14th SRP 218

-66-
ETHYLENE OXIDE (continued)

Interplanetary spacecraft decontamination operations and equ 8
Limitations of thioglycolate broth as a sterility test mediu 13
Microbial contamination control facilities/ 262
Planetary quarantine presentation/ 170
Principles and applications of laminar flow devices/ 206
process specifications and procedures/Development of 167
Reduction of microbial dissemination and germicidal activity 215
Reduction of microbial dissemination and germicidal activity 216
Sterilizable liquid propulsion system/ 39
Sterilizable liquid propulsion system/ 194
Sterilizable liquid propulsion system, part 2 final report 192
Sterilizable polymers/ 258
sterilization, a current review of principles and practices/ 178
Sterilization and decontamination techniques for space vehic 10
Sterilization and decontamination, I./ 183
sterilization/Methyl bromide as an aid to 238
Testing a sterilizable liquid propulsion system/ 28

EVALUATION
of methods for the search for life on Mars/A comparative 166

EXOBIOLOGY
1973 Viking voyage to Mars/ 325
Atmospheres of Mars and Venus/ 121
Automated microbial metabolism laboratory/ 186
Enzyme activity in terrestrial soil in relation to explorati 50
Frontiers in solar system 264
Hypothetical Martian biosphere/ 189
Life in space/ 36
Phase II of a sterilization and storage compatibility study 204
Planetary and space environments/ 42
Possible contamination of earth by lunar or Martian life/ 57a
problems/Resistance of organisms to extreme influences in 38
Resistance of the protozoon colpoda maupasi to Martian condi 191
search for extraterrestrial life/ 133
Spacecraft sterilization/ 59

EXPLORATION
of the Martian surface/Enzyme activity in terrestrial soil 50

EXPLORER 35 SPACECRAFT
Clean room facilities for 32

EXTRATERRESTRIAL
environments/Biochemical bases for life in 326
environments/Life in 144
environments/Life in 145
use/Phase of a sterilization and storage compatibility study 204

EXTRATERRESTRIAL LIFE
detection/Experiments and instrumentation for 33
Exobiology 133
Ice caps on Venus/ 35
Planetary quarantine progress/ 219
Possibility of survival of terrestrial organisms under Marti 34
Problems in detection of 23

EXTRAVEHICULAR
tunnel suit system, patent application/ 181

-67-
Dry heat destruction rates for microorganisms on open surfaces
Effects of decontamination sterilization, and thermal vacuum
Effects of exposure of electronic assemblies to ethylene oxide
Effects of sterilization procedures on spacecraft materials/
Evaluation of new penetrating sporicide potentially useful
Experimental heat chamber for sterilization of large interplanetary structures
Experimental heat chamber for sterilization of large interplanetary structures
Experimental heat chamber for sterilization of large interplanetary structures
Experimental heat chamber for sterilization of large interplanetary structures
Experimental heat chamber for sterilization of large interplanetary structures
Experimental heat chamber for sterilization of large interplanetary structures
Experimental heat chamber for sterilization of large interplanetary structures
Experimental heat chamber for sterilization of large interplanetary structures
Experimental heat chamber for sterilization of large interplanetary structures
Feasibility of thermoradiation for sterilization of spacecraft
Integrated lethality of sterilization temperatures profiles/
NASA's current edition/Procedures for the microbiological examination
Paraformaldehyde for surface sterilization and detoxification
Planetary quarantine and spacecraft sterilization/
Planetary quarantine progress/
Planetary quarantine presentation/
Potential effects of recent findings on spacecraft sterilization
Principles and applications of laminar-flow devices/
Quality assurance monitoring of the microbiological aspects
Severe planetary environments and their implications on technology
Sterile access studies in the pilot assembly sterilization
Sterilization and thermal-vacuum effects on spacecraft polymers
Sterilization-environmental testing of initiators/
Sterilization requirements, operational procedures, facilities
Sterilization supporting activities/
Thermal death of Bacillus subtilis var. niger spores on select media
Traditional concepts for contamination control/

HAZARDS

Containment of microbial aerosols in a microbiological safety chamber

HEAT - HEATING

C702543 Alpha III ball bearing gyroscope motor sterilization chamber for sterilization of large interplanetary structures
(chapter) Experimental heat chamber for sterilization of large interplanetary structures
Development and application of a system model for spacecraft sterilization
Effects of sterilization procedures on spacecraft materials/
Exospheric temperatures on Mars and Venus/
Feasibility of thermoradiation for sterilization of spacecraft
flow/Relationship of the surface mass average and geometric mean flow/Inertial sensor sterilization/
HEAT – HEATING (continued)

Kinetics of thermal death of bacteria/
Limitations of the initiation of germination of bacterial sp 209
Natural selection of microorganisms in extreme environments 19
Paraformaldehyde for surface sterilization and detoxification 301
Planetary quarantine presentation 170
Planetary quarantine program/
Quality assurance requirements manual for planetary spacecraft 138
(sealing) Sterilizable polymeric materials/
sealing tool and port opening/Development of the sterile 201
Spacecraft component survivability during entry into the spacecraft sterilization by destructive 297
specification/Review of sterilizable and impact resistant Ni-Cd battery development 225
sterilizable and impact resistant Ni-Cd battery development 235
sterilizable and impact resistant Ni-Cd battery development 236
sterilizable and impact resistant Ni-Cd battery development 237
sterilizable battery development 195
sterilizable battery/separator development for a sterilizable battery separators/Application of bench tests 45
sterilizable battery separators/Application of bench tests 327
sterilizable battery separators/Application of bench tests 328
sterilizable battery/separator development for a sterilizable impact resistant cell development/
Sterilizable inertial sensors: high-performance accelerometer 71
Sterilizable liquid propulsion system/ QPR 150
Sterilizable liquid propulsion system development/
sterilizable Ni-Cd battery development 142
sterilizable Ni-Cd battery development 290
sterilizable pH electrodes/
sterilizable, remotely activated battery development program 176
Sterilization and decontamination. II./ 119
sterilization/Effects of exposure of electronic assemblies sterilization/Effects of exposure of electronic assemblies 184
(sterilization) Matrix test of sterilizable piece parts/
(tolerant) Development of high resolution, high stability 200
sterilization/Effects of exposure of electronic assemblies sterilization/Effects of exposure of electronic assemblies 26

HELIUM
Experimental heat chamber for sterilization of large interpl 83
HEPA FILTERS
Microbial contamination control facilities 262
Principles and applications of laminar-flow devices/
HETEROTROPHIC MICROORGANISMS
Problems in detection of extraterrestrial life/
HIGH-PERFORMANCE ACCELEROMETER
Development of a sterilizable 146
Investigation of sterilizable 149
Sterilizable inertial sensors 150
HUMIDITY
on the dry heat destruction of Bacillus subtilis var. niger
HYPEROXIA
upon microorganisms. Membrane culture techniques for exposin 118
LAMINAR AIRFLOW
Apollo and contamination control-Boeing's role/Avionics clean room/Biological cabinet/Development of a clean room techniques/Development of clean rooms and devices/Design requirements for devices/Basic principles of devices/Principles and application of Effect of air velocity on biocontamination in a clean room/Effect of environment on biological burden during spacecraft environment/Designing for the effect of controlling airborne contamination/Effectiveness of HEPA:LAF environmental control at Riken laboratories/Microorganisms removed from contaminated stainless steel by Planetary quarantine program/Rooms to patient isolation/The application of Vacuum probe: new approach to the microbiological sampling ventilation to operating rooms/Study of the application of

LANDING CAPSULE
Sterilization container/Continuation of the development of sterilization container/Continuation of the development of sterilization container/Continuation of the development of surfaces/Thermal death of Bacillus subtilis var. niger spore

LIFE
in space/on Mars/Comparative evaluation of methods for the search for life

LIFE DETECTION
Microbiology studies/(techniques) Exobiology: the search for extraterrestrial life

LIGHT SCATTERING MEASUREMENTS
Size and shape of bacteria by

LIMITATIONS
of the initiation of germination of bacterial spores as a spore

LIQUID
propulsion system, part 2 final report/Sterilizable propulsion system/Sterilizable propulsion system/Sterilizable propulsion system/Sterilizable sterile insertion/A feasibility study of

LUNAR
atmospheric contamination due to an Apollo landing/missions/Implementation of a chemical contaminant inventory module engine exhaust products/Apollo or Martian life/Possible contamination of earth by planetary quarantine systems study and information system/

LYOPHILIZATION
Ecology and thermal inactivation of microbes in and on inter Experimental model of a bacterial aerosol in the dust phase/
(4) Mars surface models [1968] NASA space vehicle design
(5) Buoyant Venus station mission feasibility study for 1972
(5) Ice caps on Venus/
6 and 7/Television observations from
'69 spacecraft: a relative distribution/D_{125} values for spo
1973 Viking voyage to Mars/
Development of a sterilizable high performance accelerometer
Marsian scene/
Planetary quarantine presentation/
Effects of sterilization and vacuum exposure on potential

MARINER MARS
1969 a preliminary report/
1969 flight path design and mission analysis/
1969 Services provided in support of the planetary quarantine
Space programs summary no. 37-60, vol. 1. Flight projects/

MARINER VENUS
Study program on the development of mathematical models(s)

MARS
1973 Viking voyage to
and Venus/Atmospheres of
and Venus/Exospheric temperatures on
atmospheric entry/Study of the thermal kill of viable organisms
ATP assay of terrestrial soils—a test of an exobiological
Biological losses and the quarantine policy for
Buoyant Venus station mission feasibility study for 1972
Capsule system advanced development sterilization program/
Comparative evaluation of methods for the search for life on
Contamination control and sterilization in space programs/
Cryobiologist's conjecture of planetary life/
Frontiers in solar system exobiology/
Hypothetical Martian biosphere/
landing capsule sterilization container/Continuation of the
landing capsule sterilization container/Continuation of the
landing capsule sterilization container/Continuation of the
Life in extraterrestrial environments/
Life in extraterrestrial environments/
Life in space/
Mariner-Mars 1969 a preliminary report/
Microbiology studies/
mission/Effects of sterilization and vacuum exposure on potential
on earth/
Planetary quarantine progress/
Resistance of the protozoon colpoda maupasi to Martian condi
(space probes) Mariner Mars 1969 flight path design and miss
Sterile soil from Antarctica: organic analysis/
Spacecraft sterilization by destructive heating/
surface models [1968] NASA space vehicle design criteria
Television observations from Mariner 6 and 7/
water vapor in its atmosphere/
MARTIAN
atmosphere/Spacecraft component survivability during entry
biosphere/A hypothetical
conditions of atmospheric pressure and low partial pressure
conditions/Possibility of survival of terrestrial organisms
environment on certain enzymes/Effect of a simulated
life/Possible contamination of earth by lunar or
scene/The
surface/Enzyme activity in terrestrial soil in relation to

MAST
SEE MOBILE ASSEMBLY STERILIZATION TECHNIQUES

MATED SURFACE
areas and encapsulated in solids of spacecraft hardware/Dry
(contamination) Effect of humidity on the dry heat destructi
(contamination) Evaluation of new penetrating sporicide pot
Effects of pressure on the dry heat resistance of Bacillus
Investigation of methods for the sterilization of potting
Investigation of methods for the sterilization of potting

MATHEMATICS
of microbial populations/

MATHEMATICAL MODEL(S) - MATHEMATICAL MODELING
Analytical basis for assaying buried biological contaminatio
for contamination and pollution prediction/
for microbial burden prediction/Study program on the develop
for statistical determination of internal microbial contamin
of the effect of a predator on species diversity/A
of planetary atmospheres/Fundamentals of
Stochastic
terminal sterilization cycle/Technology feasibility spacecra
terminal sterilization cycle/Technology feasibility spacecra

MECHANICAL TESTING
Sterilizable polymeric materials/

MEMBRANE
culture techniques for exposing cells directly to test atmos
(filter) Monitoring for particle contamination on surfaces
(filter) Reduction of microbial dissemination germicidal act
filter support for test organisms/Long-term bactericidal eff
Sterilizable liquid propulsion system/
Study of aseptic maintenance by pressurization/

MERCURY
Frontiers in solar system exobiology/

METABOLISM
laboratory/Automated microbial
Microbiology studies/

METHODS
for the search for life on Mars/Comparative evaluation of
METHYL BROMIDE
as an aid to ethylene oxide sterilization/

MICROBES
in and on interplanetary space vehicle components/Ecology

-74-
<table>
<thead>
<tr>
<th>MICROBIAL</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>abundance in dry valleys of Souther Victoria Land/Soil moist (assay)</td>
<td>96</td>
</tr>
<tr>
<td>Capsule system advanced development sterilization pr burden prediction</td>
<td>156</td>
</tr>
<tr>
<td>Study program on the development of mathem contamination control after</td>
<td>202</td>
</tr>
<tr>
<td>terminal sterilization/ contamination control facilities/</td>
<td>340</td>
</tr>
<tr>
<td>contamination detected on the Apollo 9 spacecraft/</td>
<td>262</td>
</tr>
<tr>
<td>contamination from fractured solids/Release of (contamination)</td>
<td>241</td>
</tr>
<tr>
<td>Microbiological evaluation of the vacuum pro contamination of spacecraft</td>
<td>230</td>
</tr>
<tr>
<td>materials/Evaluation and refinement corrosion/</td>
<td>16</td>
</tr>
<tr>
<td>dissemination and germicidal activity of ethylene oxide/Reduction</td>
<td>215</td>
</tr>
<tr>
<td>dissemination and germicidal activity of ethylene oxide/Reduction of</td>
<td>216</td>
</tr>
<tr>
<td>incubation and gas composition/Antarctic dry valley soil</td>
<td>217</td>
</tr>
<tr>
<td>load monitor/Manned spacecraft</td>
<td>94</td>
</tr>
<tr>
<td>metabolism laboratory/Automated populations/Mathematics of</td>
<td>163</td>
</tr>
<tr>
<td>sampling problem/Model for the quantification of the qualita</td>
<td>186</td>
</tr>
<tr>
<td>sampling requirements for Apollo modules/Determination of</td>
<td>46</td>
</tr>
<tr>
<td>MICROFLORA</td>
<td>254</td>
</tr>
<tr>
<td>Desert</td>
<td>256</td>
</tr>
<tr>
<td>in small rooms intended for long-term experiments with subje</td>
<td>95</td>
</tr>
<tr>
<td>in soils of desert regions/Abundance of</td>
<td>321</td>
</tr>
<tr>
<td>MICROBIOLOGICAL</td>
<td>93</td>
</tr>
<tr>
<td>aerosol stabilizers as substitutes for bound water: a study</td>
<td>288</td>
</tr>
<tr>
<td>aerosol stabilizers as substitutes for bound water: an in vi</td>
<td>289</td>
</tr>
<tr>
<td>aspects of the JPL sterilization assembly development labora</td>
<td>136</td>
</tr>
<tr>
<td>control of radiation sterilization of medical supplies. Numb</td>
<td>105</td>
</tr>
<tr>
<td>evaluation of a large volume air incinerator/</td>
<td>9</td>
</tr>
<tr>
<td>evaluation of the vacuum probe surface sampler/A</td>
<td>3</td>
</tr>
<tr>
<td>examination of space hardware-NASA's current edition/Procedu hazards</td>
<td>229</td>
</tr>
<tr>
<td>in the laboratory/Control of methods of testing the atmosphere/</td>
<td>127</td>
</tr>
<tr>
<td>monitoring of spacecraft assembly facility operations/ profiles</td>
<td>233</td>
</tr>
<tr>
<td>Apollo 7, 8, and 9 spacecraft/</td>
<td>52</td>
</tr>
<tr>
<td>control of radiation sterilization of medical supplies. Tota</td>
<td>106</td>
</tr>
<tr>
<td>evaluation of a large volume air incinerator/</td>
<td>240</td>
</tr>
<tr>
<td>protection of surfaces/Vacuum probe: new approach to the studies on</td>
<td>2</td>
</tr>
<tr>
<td>the Apollo 10 and 11 spacecraft/Qualitative</td>
<td>336</td>
</tr>
<tr>
<td>MICROBIOLOGY</td>
<td>224</td>
</tr>
<tr>
<td>and sterilization/Biostatistics and space exploration</td>
<td>112</td>
</tr>
<tr>
<td>and sterilization/Biostatistics and space exploration</td>
<td>113</td>
</tr>
<tr>
<td>as related to planetary quarantine/Environmental Control of microbio</td>
<td>74</td>
</tr>
<tr>
<td>logical hazards in the laboratory/</td>
<td>233</td>
</tr>
<tr>
<td>quality activities for a planetary mission/</td>
<td>108</td>
</tr>
<tr>
<td>Scientific publications and presentations relating to planet studies/</td>
<td>78</td>
</tr>
<tr>
<td>Traditional concepts for contamination control/</td>
<td>165</td>
</tr>
</tbody>
</table>
MICROORGANISM(S)

Abundance of microflora in soils of desert regions/ 93
Advances in large-volume air sampling/ 116
alive and imprisoned in a polymer cage/ 317
Analytical basis for assaying buried biological contaminatio 180
ATP assay of terrestrial soils-a test of an exobiological ex 197
Biochemical bases for life in extraterrestrial environments/ 326
Biological experimentation-methods and results/ 14
Biological losses and the quarantine policy for Mars/ 294
Clean assembly and sterilization laboratory/ 110
Clean room technology/ 318
Comments on the in-flight recontamination hazards/ 320
Comparative evaluation of methods for the search for life on 166
Contamination control and sterilization in space programs/ 220
Continuation of the development of a typical Mars landing 61
Continuation of the development of a typical Mars landing 62
Continuation of the development of a typical Mars landing 63
Cryobiologist's conjecture of planetary life/ 270
Desert microflora/ 95
Designing for the laminar flow environment/ 332
Determination of quantitative microbial sampling requirement 256
Development of new and improved techniques for the bioassay 339
Discussion of a possible contamination of space with terrest 91
Effects of high intensity visible and ultraviolet light on 104
Effects of pressure on the dry heat resistance of Bacillus 226
Environmental microbiology as related to planetary quarantin 74
Ethylene oxide sterilization, a current review of principles 178
Evaluation and refinement of a mathematical model for the 16
Evaluation of a quantal response model with variable concen 114
Exobiology: the search for extraterrestrial life/ 133
Experimental heat chamber for sterilization of large interpl 79
Experimental heat chamber for sterilization of large interpl 81
from surfaces by swabbing/Recovery of known numbers of 12
in extreme environments/Natural selection of 57
in space/Survival of 190
Integrated lethality of sterilization temperature profiles/ 115
Investigations into a diffusion model of dry heat sterilizat 65
Investigations of methods for the sterilization of potting 306
Investigations of methods for the sterilization of potting 307
Life in extraterrestrial environments/ 145
Limitations of thioglycolate broth as a sterility test mediu 13
Martian scene/ 155
Mathematical model of the effect of a predator on species 338
Mathematical models for contamination and pollution predicti 221
Mathematics of microbial populations/ 46
Membrane culture techniques for exposing cells directly to 7
Microbiological control of radiation sterilization of medica 9
Microbiological control of radiation sterilization of medica 105
Microbiological evaluation of the vacuum probe surface sampl 229
Microbiology quality activities for a planetary mission/ 108
Microbiology studies/ 165
Model for the quantification of the qualitative microbial sa 254
MICROORGANISM(S) (continued)

on open surfaces, in mated surface areas and encapsulated in origin of microbial life on earth and its implications for phase II of a sterilization and storage compatibility study planetary quarantine presentation/

Planetary quarantine program/

Planetary quarantine program/

Planetary quarantine progress/

Planetary quarantine provisions for unmanned planetary mission potential effects of recent findings on spacecraft sterilization preliminary sublimation studies/

Principles and applications of laminar flow devices/

Quality assurance monitoring of the microbiological aspects reduction of microbial dissemination germicidal activity of release of microbial contamination from fractured solids/removed from contaminated stainless steel by laminar air flow

Review of heat specifications/

Services provided in support of the planetary quarantine services provided in support of the planetary quarantine services provided in support of the planetary quarantine soil moisture, relative humidity, and microbial abundance in spacecraft component survivability during entry into Martian spacecraft sterilization/

Spacecraft sterilization by destructive heating/

Spacecraft sterilization training manual/

Sterilization assembly development laboratory facility description sterilizing supporting activities/

Study of aseptic maintenance by pressurization/

Study of the application of laminar flow ventilation to open systematic description and key to isolants from Chile-Atacama systematic description and key to streptomycetes isolants from thermal death of Bacillus subtilis var. niger spores on sele through small orifices/study of the possible movement of twelfth annual COSPAR meeting/

Ways and means of reducing to a minimum microflora in small

MISSION

analysis/Mariner Mars 1969 flight path design and feasibility study for 1972 and 1973 launch opportunities/

MOBILE ASSEMBLY STERILIZATION TECHNIQUES (MAST)

Development of new and improved techniques for the bioassay

MODEL(S)

[1968] NASA space vehicle design criteria [environment]/Mars contamination control. A state-of-the-art review/

during assembly in the sterilization assembly development for spacecraft sterilization requirements/a rational for the quantification of the qualitative microbial sampling of a bacterial aerosol in the dust phase/experimental stochastic math
PARTICULATE(S)

Analytical study of the products of collisions of 1 eV atoms

Bacterial response to the soil environment/

Detection requirements for laminar airflow clean rooms and devi

Designing for the laminar flow environment/

Detecting of bacteria and viruses in liquids/

Discussion of a possible contamination of space with terrestrial

HEPA: LAF environmental control at Riken laboratories/

Immediate and future challenges to contamination control tec

Microbial contamination control after terminal sterilization

Planetary quarantine program/

Principles and applications of laminar-flow devices/

Reduction of microbial dissemination/

Reduction of microbial dissemination germicidal activity of

Spacecraft sterilization/

Study of aseptic maintenance by pressurization/

PENETRATING SPORICIDE

potentially useful in spacecraft sterilization/Evaluation of

PERFORMANCE

Heat sterilizable battery development/

PERSONNEL

Clean room

(protection) Containment of microbial aerosols in a microbio

pH ELECTRODES

Heat sterilizable

PHYSICAL

(quantitites) Mathematics of microbial populations/

(techniques) Experiments and instrumentation for extraterrestrial

(testing) Sterilizable polymeric materials/

PHYSICS

involved in meeting planetary quarantine/Approach to underst

PHYSIOLOGY

Kinetics of thermal death of bacteria/

PHOSPHATE REDUCTION

Microbial corrosion/

PIECE PARTS

Matrix test of sterilizable

Matrix test of sterilizable

PILOT ASSEMBLY STERILIZER SYSTEM (PASS)

Sterile access studies in the

PIioneer MISSIONS

PLANETARY

and space environments/

atmospheres/Fundamentals of mathematical modeling of

(capsules) Review of heat specifications/

environments and their implications on technology for future

life/A cryobiologist's conjecture of

mission/Microbiology quality activities for a

probe - origin of atmospheres of Venus/

(surfaces) Problems in detection of extraterrestrial life/
<table>
<thead>
<tr>
<th>PLANETARY QUARANTINE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>analysis/</td>
<td>280</td>
</tr>
<tr>
<td>and spacecraft sterilization/</td>
<td>124</td>
</tr>
<tr>
<td>Approach to understanding the basic physics involved in meet</td>
<td>15</td>
</tr>
<tr>
<td>Environmental microbiology as related to</td>
<td>74</td>
</tr>
<tr>
<td>models/</td>
<td>86</td>
</tr>
<tr>
<td>presentations/</td>
<td>170</td>
</tr>
<tr>
<td>problems/The</td>
<td>287</td>
</tr>
<tr>
<td>program/</td>
<td>266</td>
</tr>
<tr>
<td>program/</td>
<td>267</td>
</tr>
<tr>
<td>program/</td>
<td>268</td>
</tr>
<tr>
<td>program/</td>
<td>269</td>
</tr>
<tr>
<td>progress/</td>
<td>219</td>
</tr>
<tr>
<td>provisions for unmanned planetary missions/</td>
<td>213</td>
</tr>
<tr>
<td>requirements/Services provided in support of the</td>
<td>128</td>
</tr>
<tr>
<td>requirements/Services provided in support of the</td>
<td>129</td>
</tr>
<tr>
<td>requirements/Services provided in support of the</td>
<td>130</td>
</tr>
<tr>
<td>Scientific publications and presentations relating to systems study and information system/Lunar</td>
<td>78</td>
</tr>
<tr>
<td>POLICIES</td>
<td>255</td>
</tr>
<tr>
<td>Law for aerospace activities 1966-2066/</td>
<td>98</td>
</tr>
<tr>
<td>POLLUTION</td>
<td>221</td>
</tr>
<tr>
<td>prediction/Mathematical models for contamination and POLYMERIC</td>
<td></td>
</tr>
<tr>
<td>materials/Sterilizable</td>
<td>175</td>
</tr>
<tr>
<td>materials/Sterilization and thermal vacuum effects on spacec products/Effects of decontamination sterilization, and therm</td>
<td>259</td>
</tr>
<tr>
<td>POTTING COMPOUNDS</td>
<td>257</td>
</tr>
<tr>
<td>and mated surfaces/Investigation of methods for the steriliz</td>
<td>306</td>
</tr>
<tr>
<td>and mated surfaces/Investigation of methods for the steriliz</td>
<td>307</td>
</tr>
<tr>
<td>PROBABILITY</td>
<td>230</td>
</tr>
<tr>
<td>Release of microbial contamination from fractured solids/</td>
<td></td>
</tr>
<tr>
<td>PROBES</td>
<td>10</td>
</tr>
<tr>
<td>Sterilization and decontamination techniques for space vehic</td>
<td></td>
</tr>
<tr>
<td>PRESSURE</td>
<td>1</td>
</tr>
<tr>
<td>(differential) Study of the possible movement of microorgani on dry heat resistance of Bacillus subtilis var. niger spore</td>
<td>226</td>
</tr>
<tr>
<td>PRESSURIZATION</td>
<td>102</td>
</tr>
<tr>
<td>Study of aseptic maintenance by</td>
<td></td>
</tr>
<tr>
<td>PROTECTION</td>
<td>55</td>
</tr>
<tr>
<td>Development of a laminar airflow biological cabinet/</td>
<td></td>
</tr>
<tr>
<td>PROCEDURE(S)</td>
<td>182</td>
</tr>
<tr>
<td>Apollo and contamination control - McDonnell Douglas role/</td>
<td></td>
</tr>
<tr>
<td>Evaluation of a quantal response model with variable concent</td>
<td>114</td>
</tr>
<tr>
<td>Implementation of a chemical contaminant inventory for lunar</td>
<td>123</td>
</tr>
<tr>
<td>Integrated lethality of sterilization temperature profiles/</td>
<td>115</td>
</tr>
<tr>
<td>PROPELLANT</td>
<td>282</td>
</tr>
<tr>
<td>Apollo lunar module engine exhaust products/</td>
<td></td>
</tr>
<tr>
<td>PROPULSION SYSTEM</td>
<td>142</td>
</tr>
<tr>
<td>development/Sterilizable liquid</td>
<td></td>
</tr>
<tr>
<td>(performance) Testing a sterilizable liquid propulsion syst</td>
<td>28</td>
</tr>
</tbody>
</table>
RADIOISOTOPE THERMAELECTRIC GENERATOR (RTG)
and scientific experiments on spacecraft/Interactions between component feasibility study/Planar radiation test laboratory/shield optimization study/Unmanned spacecraft

RADIATION
1973 Viking voyage to Mars/Adhesives/Biological experimentation—methods and results/Contamination control handbook/Effects of sterilization and vacuum exposure on potential health fields from RTGs and scientific experiments on spacecraft/Influence of the dose rate and time factor on bactericidal Microbial contamination control facilities/Planetary quarantine program/Sterilization/sterilization of medical supplies. Number of microorganisms sterilization of medical supplies. Total count on medical

RECONTAMINATION
Continuation of the development of a typical Mars landing ca Continuation of the devleopment of a typical Mars landing ca Continuation of the development of a typical Mars landing ca hazards/Comments on the in-flight Study of the possible movement of microorganisms through sma

REFRACTIVE INDEX
Size and shape of bacteria by light scattering measurements/

RELATIVE HUMIDITY
and microbial abundance in dry valleys of Southern Victoria Development of ethylene oxide process specifications and pro Effects of A_w on the sporicidal activity of ethylene oxide/Microorganisms removed from contaminated stainless steel by on survival of Bacillus subtilis var. niger spores at 22 and

RELIABILITY
Apollo and contamination control NASA's role/Application of bench tests in the development of heat-steril Application of bench tests in the development of heat-steril Clean room technology/Development of high resolution, high stability sterilizable Effects of exposure of electronic assemblies to ethylene oxide Effects of sterilization procedures on spacecraft materials/Experimental heat chamber for sterilization of large interpl Heat sterilizable and impact resistant Ni-Cd battery develop Heat sterilizable and impact resistant Ni-Cd battery develop Heat sterilizable and impact resistant Ni-Cd battery develop Heat sterilizable impact resistant cell development/Heat sterilizable pH electrodes/Heat sterilizable, remotely activated battery development Inertial sensor sterilization/Matrix test of sterilizable piece parts/Separator development for a heat sterilizable battery/
SAMPLING (continued)
Quality assurance requirements manual for planetary spacecraft
Reduction of microbial dissemination/
Reduction of microbial dissemination and germicidal activity
Services provided in support of the planetary quarantine req
Soil moisture, relative humidity and microbial abundance in

SAMPLING TECHNIQUES
Manufacturing aspects of technology feasibility spacecraft

SCIENTIFIC OBJECTIVES
Mariner Mars 1969 flight path design and mission analysis/

SENSIVITY
Planetary quarantine presentation/

SHAPE
of bacteria by light scattering measurements/Size and

SIMULATION
Adhesives/
Analytical study of the products of collisions of 1 eV atoms
Atmospheric contaminants in spacecraft/
ATP assay of terrestrial soils—a test of an exobiological
Automated microbial metabolism laboratory/
Biological losses and the quarantine policy for Mars/
Biostatistics and space exploration: microbiology and steril
Biostatistics and space exploration: microbiology and steril
Buoyant Venus station mission feasibility study for 1972 and
Comparative evaluation for the search for life on Mars/
Continuation of the development of a typical Mars landing ca
Continuation of the development of a typical Mars landing ca
Continuation of the development of a typical Mars landing ca
Determination of quantitative microbial sampling requirement
Development and application of a system model for spacecraft
Enzyme activity in terrestrial soil in relation to explorati
Evaluation and refinement of a mathematical model for the sta
Exospheric temperatures on Mars and Venus/
Experimental heat chamber for sterilization of large interpl
Hypothetical Martian biosphere/
Investigations into a diffusion model of dry heat sterilizat
Life in extraterrestrial environments/
Life in extraterrestrial environments/
Mars surface models [1968] NASA space vehicle design criteri
Martian environment on certain enzymes/Effect of a
Mathematical model of the effect of a predator on species
Mathematical models for contamination and pollution predicti
Model for the quantification of the qualitative microbial
Modeling and the kinetic death model/
Planetary quarantine and spacecraft sterilization/
Planetary quarantine models/
Planetary quarantine presentation/
Planetary quarantine program/
Planetary quarantine program/
Planetary quarantine program/
Planetary quarantine program/

-83-
SIMULATION (continued)

Potential effects of recent findings on spacecraft sterilization
Release of microbial contamination from fractured solids/
Resistance of the protozoon colpoda maupasi to Martian condi
Severe planetary environments and their implications on tech
Spearman simultaneous estimation for a compartmental model/
Sterilizable polymeric materials/
Study of the thermal kill of viable organisms during Mars at
Study program on the development of mathematical model(s) for
Technology feasibility spacecraft thermal math modeling term
Technology feasibility spacecraft thermal math modeling term
(technology) Mars on Earth/

SIZE

and shape of bacteria by light scattering measurements/The

SOIL

Characterization of bacterial populations by means of factor
environment/Bacterial response to the
from Antarctica: organic analysis/Sterile
Life in extraterrestrial environments/
Life in extraterrestrial environments/
microbial incubation and gas composition/Antarctic dry valle
Microbiological studies/
microbe, relative humidity and microbial abundance in dry
of desert regions/Abundance of microflora in
Systematic description and key to isolants from Chile-Atacam

SPACE

environments/Planetary and
exploration: microbiology and sterilization/Biostatistics
discovery: microbiology and sterilization/Biostatistics
flights/Stability of viruses in foods for
Life in
(probes) Atmospheres of Mars and Venus/
(probes) Buoyant Venus station mission feasibility study for
(probes) Buoyant Venus station mission feasibility study for
(probes) Ice caps on Venus/
(probes) Mariner-Mars 1969 a preliminary report/
(probes) Planetary probe-origin of atmosphere of Venus/
programs/Contamination control and sterilization in
vehicle components/Ecology and thermal inactivation of micro
vehicle design criteria/environment]/Mars surface models '68
vehicles/Sterilization and decontamination techniques for
with terrestrial life/Discussion of a possible contamination

SPACExcraft

1973 Viking voyage to Mars/
Analytical basis for assaying buried biological contaminatio
Apollo and contamination control - McDonnell Douglas' role/
Apollo and contamination control - NASA's role/
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application of bench tests in development of heat sterilizable...</td>
<td>327</td>
</tr>
<tr>
<td>Application of bench tests in development of heat sterilizable...</td>
<td>328</td>
</tr>
<tr>
<td>assembly areas/Dry heat inactivation kinetics of naturally...</td>
<td>76</td>
</tr>
<tr>
<td>assembly/Effect of environment on biological burden during...</td>
<td>300</td>
</tr>
<tr>
<td>assembly facility operations/Microbiological monitoring of...</td>
<td>106</td>
</tr>
<tr>
<td>Atmospheric contaminants in...</td>
<td>43</td>
</tr>
<tr>
<td>Biological losses and the quarantine policy for Mars/</td>
<td>294</td>
</tr>
<tr>
<td>Biostatistics and space exploration: microbiology and steril...</td>
<td>112</td>
</tr>
<tr>
<td>Buoyant Venus station mission feasibility study for 1972 and...</td>
<td>64</td>
</tr>
<tr>
<td>Capsule system advanced development sterilization program/</td>
<td>156</td>
</tr>
<tr>
<td>Clean assembly and sterilization laboratory/</td>
<td>110</td>
</tr>
<tr>
<td>Clean room facilities for Explorer 35</td>
<td>32</td>
</tr>
<tr>
<td>Clean room technology/</td>
<td>318</td>
</tr>
<tr>
<td>Comments on the in-flight recontamination hazards/</td>
<td>320</td>
</tr>
<tr>
<td>component survivability during entry into the Martian atmosp...</td>
<td>296</td>
</tr>
<tr>
<td>Conceptual design study of a terminal sterilization chamber</td>
<td>60</td>
</tr>
<tr>
<td>Contamination control and sterilization in space programs/</td>
<td>220</td>
</tr>
<tr>
<td>decontamination operations and equipment/Interplanetary</td>
<td>8</td>
</tr>
<tr>
<td>Determination of quantitative microbial sampling requirement</td>
<td>256</td>
</tr>
<tr>
<td>Development of new and improved techniques for the bioassay</td>
<td>339</td>
</tr>
<tr>
<td>Development of the sterile insertion heat sealing tool and</td>
<td>201</td>
</tr>
<tr>
<td>Development of a sterilizable high-performance accelerometer</td>
<td>146</td>
</tr>
<tr>
<td>Discussion of a possible contamination of space with terrest...</td>
<td>91</td>
</tr>
<tr>
<td>Experimental heat chamber for sterilization of large interpl</td>
<td>79</td>
</tr>
<tr>
<td>Experimental heat chamber for sterilization of large interpl</td>
<td>80</td>
</tr>
<tr>
<td>Experimental heat chamber for sterilization of large interpl</td>
<td>82</td>
</tr>
<tr>
<td>Experimental heat chamber for sterilization of large interpl</td>
<td>83</td>
</tr>
<tr>
<td>Experimental heat chamber for sterilization of large interpl</td>
<td>84</td>
</tr>
<tr>
<td>Experimental heat chamber for sterilization of large interpl</td>
<td>152</td>
</tr>
<tr>
<td>Experimental heat chamber for sterilization of large interpl</td>
<td>153</td>
</tr>
<tr>
<td>Experimental heat chamber for sterilization of large interpl</td>
<td>154</td>
</tr>
<tr>
<td>(hardware) Class 100 clean room program, preparation and ini...</td>
<td>41</td>
</tr>
<tr>
<td>hardware/Dry heat destruction rates for microorganisms on op...</td>
<td>232</td>
</tr>
<tr>
<td>hardware-NASA's current edition/Procedures for the microbiol...</td>
<td>127</td>
</tr>
<tr>
<td>Immediate and future challenges to contamination control tec...</td>
<td>120</td>
</tr>
<tr>
<td>Implementation of a chemical contaminant inventory for lunar</td>
<td>123</td>
</tr>
<tr>
<td>Inertial sensor sterilization/</td>
<td>148</td>
</tr>
<tr>
<td>Integrated lethality of sterilization temperature profiles/</td>
<td>115</td>
</tr>
<tr>
<td>Interactions between radiation fields from RTGs and scienti</td>
<td>207</td>
</tr>
<tr>
<td>Investigation of methods for the sterilization of potting</td>
<td>306</td>
</tr>
<tr>
<td>Investigation of methods for the sterilization of potting</td>
<td>307</td>
</tr>
<tr>
<td>Investigation of sterilizable high performance accelerometer</td>
<td>149</td>
</tr>
<tr>
<td>Life in extraterrestrial environments/</td>
<td>144</td>
</tr>
<tr>
<td>Lunar-planetary quarantine systems study and information</td>
<td>255</td>
</tr>
<tr>
<td>Mariner-Mars 1969 a preliminary report/</td>
<td>212</td>
</tr>
<tr>
<td>Mars surface models [1968] NASA space vehicle design criteri</td>
<td>68</td>
</tr>
<tr>
<td>Martian scene/</td>
<td>155</td>
</tr>
<tr>
<td>materials/Effects of sterilization procedures on</td>
<td>253</td>
</tr>
<tr>
<td>materials/Evaluation and refinement of mathematical model fo</td>
<td>16</td>
</tr>
<tr>
<td>Mathematical models for contamination and pollution predicti</td>
<td>221</td>
</tr>
<tr>
<td>Microbial contamination control after terminal sterilization</td>
<td>340</td>
</tr>
</tbody>
</table>
Microbial contamination control facilities/ 262
Microbial contamination detected on the Apollo 9 241
Microbial load monitor/Manned 163
Microbiological profiles Apollo 7, 8, and 9 240
Microbiology quality activities for a planetary mission/ 108
mission/Severe planetary environments and their implications 125
Model for the quantification of the qualitative microbial 254
Phase II of a sterilization and storage compatibility study 204
Planetary quarantine presentation/ 170
Planetary quarantine program/ 269
Planetary quarantine progress/ 219
Planetary quarantine provisions for unmanned planetary missi 213
polymeric materials/Sterilization and thermal-vacuum effects 259
polymeric products/Effects of decontamination sterilization, 257
preliminary report/Feasibility of thermoradiation for sterili 251
(probes) Planetary quarantine analysis/ 280
Procedures for the microbiological examination of space hard 127
Quality assurance monitoring of microbiological aspects of 136
relative distribution/D125C values for spore isolates from 75
Release of microbial contamination from fractured solids/ 230
Review of heat specifications/ 225
RTG radiation test laboratory/ 97
RTG shield optimization study/Unmanned 295
Services provided in support of the planetary quarantine req 128
Services provided in support of the planetary quarantine req 129
Services provided in support of the planetary quarantine req 130
Services provided in support of the planetary quarantine req 231
Space programs summary no. 37-55, vol. 3/ 172
Space programs summary no. 37-58, vol. 3/ 173
Space programs summary no. 37-60, vol. 1. flight projects/ 174
Sterile access studies in pilot assembly sterilizer system 126
Sterilizable inertial sensors: high performance acceleromete 150
Sterilizable liquid propulsion system development/ 142
Sterilizable liquid propulsion system, part 2 final report/ 192
Sterilizable polymeric materials/ 175
Sterilizable polymers/ 258
Sterilization assembly development laboratory facility descr 247
Sterilization compatibility of growth media for extraterrest 222
Sterilization-environmental testing of initiators/ 70
Thermoradiation studies/ 250
Twelfth Annual COSPAR meeting/ 141

SPACECRAFT STERILIZATION
Spacecraft sterilization/ 59
and bioassay program/Manufacturing aspects of technology fea 40
and decontamination. I./ 183
and decontamination. II./ 184
Approach to understanding basic physics involved in meeting 15
by destructive heating/ 297
by heating/Quality assurance requirements manual for planeta 138

-86-
SPACECRAFT STERILIZATION (continued)

Development and application of a system model for 122
Effects of sterilization and vacuum exposure on potential 47
Evaluation of new penetrating sporicide potentially useful 56
Mariner Mars 1969 flight path design and mission analysis/ 30
Planetary quarantine 124
requirements, operational procedures, facilities and hardwar 17
requirements/Potential effects of recent findings on 272
requirements/Rational model for 5
Scientific publications and presentations relating to planet 78
Some applications of biophysics to 87
Sterilizable liquid propulsion system/ 39
Stochastic math model/ 281
Study of thermal kill of viable organisms during Mars atmosp 92
Study program on development of mathematical model(s) for mi 202
supporting activities/ 140
Survival of microorganisms in space/ 190
Testing a sterilizable liquid propulsion system/ 28
Thermal death of Bacillus subtilis var. niger spores on sele 227
thermal math modeling terminal sterilization cycle/Technolog 22
thermal math modeling terminal sterilization cycle/Technolog 164
training manual/ 242

SPORES

and its relation to dry heat resistance/Absorption-desorptio 260
at 22 and 45°C/Effect of relative humidity on survival of 323
Biostatistics and space exploration: microbiology and steril 112
Continuation of development of typical Mars landing capsule 61
Continuation of development of typical Mars landing capsule 62
Continuation of development of typical Mars landing capsule 63
control procedure/Limitations of initiation of germination 19
Discussion of possible contamination of space with terrestri 91
Dry heat destruction rates for microorganisms on open surfac 232
Dry heat inactivation characteristics of Bacillus subtilis 293
Ecology and thermal inactivation of microbes in and on inter 243
Ecology and thermal inactivation of microbes in and on inter 244
Ecology and thermal inactivation of microbes in and on inter 245
Effect of environment on biological burden during spacecraft 300
Effects of pressure on the dry heat resistance of Bacillus 226
Environmental microbiology as related to planetary quarantin 74
Evaluation of alcohol sporulation method/ 169
Evaluation of new penetrating sporicide potentially useful 56
Evaluation of quantal response model with variable concentra 114
from spacecraft assembly areas/Dry heat inactivation kinetic 76
Germicidal activity of ethylene oxide/ 14th SRP 218
Influence of dose rate and time factor on bactericidal effec 228
Investigations into diffusion model of dry heat sterilizatio 65
Investigations of methods for sterilization of potting compo 306
Investigations of methods for sterilization of potting compo 307
isolates from the Mariner '69 spacecraft: relative distribut 75
Kinetics of thermal death of bacteria/ 209

-87-
Sterilizable

Sterility

Sterile

Sterility

Sterile

Vacuum probe new approach to microprobes that support or suppress

Study of specific maintenance by reprocessing

Services provided in support of plant entry guarantee require

Release of heat sterilization studies from fractured solids

Recovery of microscopical dissection and needle case activity

Recovery of microscopical dissection and needle case activity

Quality assurance monitoring of microprobes that probe

Procedures for microprobes that extract or space hardwar

Pre-treatment sterilization studies

Patient care program

on surface/affected or in a sterile environment

on selected tissue capsule surfaces/thermal death of bacteria

National association of microorganisms in extreme environments

Microorganisms that cause inactivation of media

Sporides (continued)
STERILIZATION (continued)

liquid propulsion system/ 193
liquid propulsion system/ 194
liquid propulsion system development/ 142
liquid propulsion system, part 2 final report/ 192
liquid propulsion system/Testing a piece parts/Matrix test of piece parts/Matrix test of polymeric materials/ 175

STERILIZATION

1973 Viking voyage to Mars/ 325
Sterilization/ 117
Absorption and desorption of ethylene oxide/ 143
and decontamination. I./ 183
and decontamination. II./ 184
and decontamination techniques for space vehicles/ 10
and detoxification/Paraformaldehyde for surface/ 301
and storage compatibility study of growth media for extraterrestrial and thermal vacuum effects on spacecraft polymeric materials 259
and thermal vacuum on spacecraft polymeric products/Effects 257
and vacuum exposure on potential heat shield materials for 47
Application of bench tests in development of heat-sterilizable 327
assembly development laboratory/Biological monitoring of cap compatibility of growth media for extraterrestrial use/ 222
assembly development laboratory/Quality assurance monitoring 299
Biostatistics and space exploration: microbiology and current review of principles and practices/Ethylene oxide 178
Biostatistics and space exploration: microbiology and cycle/Technology feasibility spacecraft thermal math modelin cycle/Technology feasibility spacecraft thermal math modelin 22
Development and application of a system model for spacecraft Development of ethylene oxide process specifications and pro 122 167
Development of sterile insertion heat sealing tool and port 201
Dry heat destruction rates for microorganisms on open surfac 232
Ecology and thermal inactivation of microbes in and on inter Effects of A_g on the sporicidal activity of ethylene oxide/ 179
Effects of exposure of electronic assemblies to ethylene oxi 18
Effects of pressure on dry heat resistance of Bacillus subti environment testing of initiators/ 70
Evaluation of new penetrating sporicide potentially useful 56
Experimental model of a bacterial aerosol in dust phase/ 53
Heat sterilizable battery development/ 196
Heat sterilizable impact resistant cell development/ 71
STERILIZATION (continued)

in space programs/Contamination control and 220
Inertial sensor 147
Inertial sensor 148
Investigations into a diffusion model of dry heat 65
laboratory/Clean assembly and 110
Life in extraterrestrial environments/ 144
Life in extraterrestrial environments/ 145
Methyl bromide as an aid to ethylene oxide sterilization/ 238
Microbial contamination control after terminal 340
Microbial contamination control facilities/ 262
Microbiological evaluation of a large volume air incinerator 3
Modeling and the kinetic death model/ 85
of large interplanetary structures/Experimental heat chamber 79
of large interplanetary structures/Experimental heat chamber 80
of large interplanetary structures/Experimental heat chamber 81
of large interplanetary structures/Experimental heat chamber 82
of large interplanetary structures/Experimental heat chamber 83
of large interplanetary structures/Experimental heat chamber 84
of large interplanetary structures/Experimental heat chamber 152
of large interplanetary structures/Experimental heat chamber 154
of medical supplies. Total count on medical products/Microbi 9
of potting compounds and mated surfaces/Investigation of met 306
of potting compounds and mated surfaces/Investigation of met 307
of spacecraft—a preliminary report/Feasibility of th 251
of terrestrial spores/Parametric study to determine time-tem 89
Planetary quarantine models/ 86
Planetary quarantine presentation/ 170
Planetary quarantine program/ 266
Planetary quarantine program/ 267
Planetary quarantine program/ 268
Planetary quarantine program/ 269
polymers/ 258
Procedures for microbiological examination of space hardware 127
procedures on spacecraft materials/Effect of 253
program/C702543 Alpha III ball bearing gyroscope motor 49
program/Capsule system advanced development 156
Proper use of biological indicators in 6
Release of microbial contamination from fractured solids/ 230
(requirements) Microbiology quality activities for a planeta 108
requirements, operational procedures, facilities and hardware 17
requirements/Potential effects of recent findings on spacec 272
Review of heat specifications/ 225
Some applications of biophysics to spacecraft 87
Space programs summary no. 37-55, vol. 3/ 172
Spacecraft 59
Spacecraft component survivability during entry into Martian 296
Sterilizable liquid propulsion system/, part 2 final report/ 192
Sterilizable liquid propulsion system/ QRP 194
Survival of microorganisms in space/ 190

-90-
STERILIZATION (continued)
(techniques) Planetary quarantine progress/temperature profiles/Integrated lethality of Thermal death of Bacillus subtilis var. niger spores on sele Thermoradiation Thermoradiation studies/Traditional concepts for contamination control/training manual/Spacecraft Twelfth annual COSPAR meeting/wide angle gas bearing gyro FGG3345/with ethylene oxide/Elimination of toxicity from polyvinyl

STERILIZATION ASSEMBLY DEVELOPMENT LABORATORY (SADL)
Biological monitoring of capsule mechanical training model
Effect of environment on biological burden during spacecraft facility description and capabilities/
Quality assurance monitoring of microbiological aspects of Sterilization requirements, operational procedures, faciliti

STERILIZING supporting activities/
STOCHASTIC math model/

STORAGE COMPATIBILITY STUDY of growth media for extraterrestrial use/Phase II of Sterili

SUBLIMATION STUDIES Preliminary

SULPHATE REDUCTION Microbial corrosion/

SURFACE mass average and geometric center temperatures in transient models [1968] NASA space vehicle design criteria [environme

SURFACE CONTAMINATION - CONTAMINATED by them with the aerosol method/Experimental substantiation by virus aerosols/Method for determining virus on Continuation of development of typical Mars landing capsule Continuation of development of typical Mars landing capsule Continuation of development of typical Mars landing capsule control handbook/

Control of bacterial contamination of hard surfaces in opera Contamination control training course outline/

Effect of environment on biological burden during spacecraft Effect of humidity on dry heat destruction of Bacillus subti Effect of relative humidity on survival of Bacillus subtilis Evaluation and refinement of mathematical model for statisti Evaluation of alcohol sporulation method/

Limitations of thioglycolate broth as a sterility test mediu Microbiological monitoring of spacecraft assembly facility Microorganisms removed from contaminated stainless steel by Monitoring for particle contamination on surfaces with vacuu Recovery of known numbers of microorganisms from surfaces by Sterilization and decontamination techniques for space vehic

-91-
SURFACE SAMPLER
Services provided in support of planetary quarantine require 231
SURFACE STERILIZATION
and detoxification/Paraformaldehyde for 301
SURVEYOR
1973 Viking voyage to Mars/ 325
SURVIVAL - SURVIVABILITY
during entry into Martian atmosphere/Spacecraft component 296
of microorganisms in space/ 190
of terrestrial organisms under Martian conditions/Possibililt 34
SWABBING
Recovery of known numbers of microorganisms from surfaces 12
SYSTEMS ANALYSIS
Contamination control. A state-of-the-art review/ 54
SYSTEM MODEL
for spacecraft sterilization/Development and application of 122

TECHNIQUE(S)

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abundance of microflora in soils of desert regions/</td>
<td>93</td>
</tr>
<tr>
<td>Antarctic dry valley soil microbial incubation and gas compo</td>
<td>94</td>
</tr>
<tr>
<td>Apollo and contamination control - Boeing's role/</td>
<td>109</td>
</tr>
<tr>
<td>Application of bench tests in development of heat sterilizab</td>
<td>327</td>
</tr>
<tr>
<td>Application of bench tests in development of heat sterilizab</td>
<td>328</td>
</tr>
<tr>
<td>Biological experimentation—methods and results/</td>
<td>14</td>
</tr>
<tr>
<td>Class 100 clean room program, preparation and initial operat</td>
<td>41</td>
</tr>
<tr>
<td>Clean room personnel/</td>
<td>58</td>
</tr>
<tr>
<td>Consideration for contamination control/</td>
<td>203</td>
</tr>
<tr>
<td>Contamination control training course outline/</td>
<td>187</td>
</tr>
<tr>
<td>Control of bacterial contamination of hard surfaces in opera</td>
<td>11</td>
</tr>
<tr>
<td>Control of microbiological hazards in the laboratory/</td>
<td>233</td>
</tr>
<tr>
<td>Detection of bacteria and viruses in liquids/</td>
<td>208</td>
</tr>
<tr>
<td>Development of high resolution, high stability sterilizable</td>
<td>26</td>
</tr>
<tr>
<td>Ecology and thermal inactivation of microbes in and on inter</td>
<td>246</td>
</tr>
<tr>
<td>Effects of exposure of electronic assemblies to ethylene oxî</td>
<td>18</td>
</tr>
<tr>
<td>Enzyme activity in terrestrial soil in relation to explorati</td>
<td>50</td>
</tr>
<tr>
<td>Feasibility of thermoradiation for sterilization of spacecra</td>
<td>251</td>
</tr>
<tr>
<td>for bioassay/New fast</td>
<td>48</td>
</tr>
<tr>
<td>for bioassay of spacecraft/Development of new and improved</td>
<td>339</td>
</tr>
<tr>
<td>for space vehicles/Sterilization and decontamination</td>
<td>10</td>
</tr>
<tr>
<td>Heat sterilizable and impact resistant Ni-Cd battery develop</td>
<td>237</td>
</tr>
<tr>
<td>Interplanetary spacecraft decontamination operations and equ</td>
<td>8</td>
</tr>
<tr>
<td>Limitations of initiation of germination of bacterial spores</td>
<td>19</td>
</tr>
<tr>
<td>Limitations of thioglycolate broth as sterility test medium</td>
<td>13</td>
</tr>
<tr>
<td>Microbiological control of radiation sterilization of medica</td>
<td>9</td>
</tr>
<tr>
<td>of quantitative determination of virus on surfaces contamina</td>
<td>27</td>
</tr>
<tr>
<td>Planetary quarantine presentation/</td>
<td>170</td>
</tr>
<tr>
<td>Problems in detection of extraterrestrial life/</td>
<td>23</td>
</tr>
<tr>
<td>Proper use of biological indicators in sterilization/</td>
<td>6</td>
</tr>
</tbody>
</table>
TECHNIQUE(S) (continued)

Recovery of known numbers of microorganisms from surfaces	12
Reduction of microbial dissemination and germicidal activity	216
Relationship of surface mass average and geometric center	31
Review of heat specifications/	225
Services provided in support of planetary quarantine require	129
Services provided in support of planetary quarantine require	231
Sterilization assembly development laboratory (SADL) facilit	247
Systematic description and key to streptomyces isolants from	73
Testing a sterilizable liquid propulsion system/	28
Traditional concepts for contamination control/	234
Ways and means of reducing to minimum microflora in small	321

TECHNOLOGY

5 year forecast for contamination control/	134
Adhesives/	205
Advances in large-volume air sampling/	116
Analytical basis for assaying buried biological contaminatio	180
Apollo and contamination control Rocketdyne's role/	100
Application of bench tests in development of heat sterilizab	327
ATP assay of terrestrial soils—a test of exobiological exper	197
Avionics clean room/	111
Biological isolation garment, patent application/	292
Biological monitoring of capsule mechanical training model	299
Buoyant Venus station mission feasibility study for 1972 and	99
Capsule system advanced development sterilization program/	156
Clean assembly and sterilization laboratory/	110
Clean room	318
Comparative evaluation of methods for search for life on Mar	166
Contamination control and sterilization in space programs/	220
Contamination control handbook/	265
Continuation of development of typical Mars landing capsule	61
Continuation of development of typical Mars landing capsule	62
Continuation of development of typical Mars landing capsule	63
Design requirements for laminar airflow clean rooms and devi	188
Development and application of system model for spacecraft	122
Development of ethylene oxide process specifications and pro	167
Development of sterile insertion heat sealing tool and port	201
Discussion of possible contamination of space with terrestri	91
Dry heat inactivation characteristics of Bacillus subtilis	293
Ecology and thermal inactivation of microbes in and on inter	243
Ecology and thermal inactivation of microbes in and on inter	245
Effect of humidity on dry heat destruction of Bacillus subti	118
Effect of relative humidity on survival of Bacillus subtilis	323
Environmental microbiology as related to planetary quarantine	74
Ethylene oxide sterilization, current review of principles	178
Evaluation of alcohol sporulation method/	169
Experimental heat chamber for sterilization of large interpl	79
Experimental heat chamber for sterilization of large interpl	80
Experimental heat chamber for sterilization of large interpl	83
Experimental heat chamber for sterilization of large interpl	84
Experimental model of a bacterial aerosol in the dust phase/ 53
Extravehicular tunnel suit system, patent application/ 181
Feasibility of liquid sterile insertion/ 298
Feasibility spacecraft sterilization and bioassay program/ 40
Feasibility spacecraft thermal math modeling terminal steril 22
Feasibility spacecraft thermal math modeling terminal steril 164
for future spacecraft missions/Severe planetary environments 125
Heat sterilizable battery development/ 196
Heat sterilizable impact resistant cell development/ 71
HEPA:LAF environmental control at Riken laboratories/ 137
Immediate and future challenges to contamination control/ 120
Interactions between radiation fields from RTGs and scientif 207
Investigation of methods for sterilization of potting compou 306
Lunar planetary quarantine systems study and information sys 255
Mariner-Mars 1969 a preliminary report/ 212
Method for determining virus on surfaces contaminated by vir 177
Microbial contamination control facilities/ 262
Microbiological evaluation of vacuum probe surface sampler/ 229
Microbiological methods of testing the atmosphere/ 52
Microbiological monitoring of spacecraft assembly facility 106
Microbiology studies/ 165
Paraformaldehyde for surface sterilization and detoxificatio 301
Planetary quarantine models/ 86
Principles and applications of laminar-flow devices/ 206
Procedures for microbiological examination of space hardware 127
Quality assurance monitoring of microbiological aspects of 136
Quality assurance requirements manual for planetary spacecra 138
Reduction of microbial dissemination/ 217
Research and advanced development/ 171
Resistance of protozoon colpoda maupasi to Martian condition 191
RTG radiation test laboratory/ 97
Separator development for a heat sterilizable battery/ 45
Services provided in support of planetary quarantine require 128
Size and shape of bacteria by light scattering measurements 29
Space programs summary no. 37-55, vol. 3/ 172
Space programs summary no. 37-58, vol. 3/ 173
Spacecraft sterilization/ 59
Sterile access studies in pilot assembly sterilization syste 126
Sterilizable liquid propulsion system/ 193
Sterilizable liquid propulsion system/ 194
Sterilizable liquid propulsion system development/ 142
Sterilization/ 117
Sterilization supporting activities/ 140
Study of application of laminar flow ventilation to operatin 132
Study program on development of mathematical model(s) for 202
Twelfth annual COSPAR Meeting/ 141
Unmanned spacecraft RTG shield optimization study/ 295
1973 Viking project management/ 325
Absorption and desorption of ethylene oxide/ 143
Adhesives/ 205
Cryobiologist's conjecture of planetary life/ 270
Development of ethylene oxide process specifications and pro 167
Dry heat destruction rates for microorganisms on open surfac 232
Effect of relative humidity on survival of Bacillus subtilis 323
Effects of pressure on dry heat resistance of Bacillus subti 226
Effects of sterilization and vacuum exposure on potential he 47
Ethylene oxide sterilization current review of principles an 178
Investigation of methods for sterilization of potting compou 306
Investigation of methods for sterilization of potting compou 307
on Mars and Venus/Exospheric 161
Planetary probe-origin of atmosphere of Venus/ 210
Preliminary sublimation studies/ 308
profiles/Integrated lethality of sterilization 115
Soil moisture, relative humidity, and microbial abundance in 96
Spacecraft component survivability during entry into Martian 296
Sterilization and decontamination. I./ 183
Supposed role of microbiological aerosol stabilizers as subs 288
(time-relationship) Matrix test of sterilizable piece-parts/ 199
(time relationship) Matrix test of sterilizable piece-parts/ 200
vacuum relationships for sterilization of terrestrial spores 89
vacuum relationships for sterilization of terrestrial spores 90

TERMINAL STERILIZATION
chamber for interplanetary payload/Conceptual design study 60
cycle/Technology feasibility spacecraft thermal math modelin 22

TERRESTRIAL
life/Discussion of possible contamination of space with 91
(microorganisms) Approach to understanding basic physics inv 15
organisms under Martian conditions/F possibility of survival 34
soils-test of exobiological experiment/ATP assay of 197
spores/Parametric study to determine time-temperature-vacuum 89

TEST FACILITIES
Testing a sterilizable liquid propulsion system/ 28

TESTING ATMOSPHERE
Microbiological methods of 52

THERMAL
death of bacteria/The kinetics of 209
death of Bacillus subtilis var. niger spores on selected lan 227
inactivation of microbes in and on interplanetary space vehi 243
inactivation of microbes in and on interplanetary space vehi 244
inactivation of microbes in and on interplanetary space vehi 245
inactivation of microbes in and on interplanetary space vehi 246
kill of viable organisms during Mars atmospheric entry/Study 92
math modeling terminal sterilization cycle/Technology feasib 22
math modeling terminal sterilization cycle/Technology feasib 164

-95-
THE (continued)
Matrix test of sterilizable piece-parts/ 199
(properties) Mars surface models [1968] NASA space vehicle 68
(stability) Sterilization compatibility of growth media for 222
vacuum effects on spacecraft polymeric materials/Sterilizati 259
vacuum on spacecraft polymeric products/ 257
(vacuum) Sterilizable polymers/ 258
THERMORADIATION
for sterilization of spacecraft—a preliminary report/Feasibi 251
Planetary quarantine program/ 267
Planetary quarantine program/ 268
sterilization/ 249
studies/ 250
THIOGLYCOLATE BROTH
as a sterility test medium for materials exposed to gaseous 13
TIME-TEMPERATURE-VACUUM RELATIONSHIPS
for sterilization of terrestrial spores/Parametric study 89
for sterilization of terrestrial spores/Parametric study 90
TOLERANCE
C702543 Alpha III ball bearing gyroscope motor sterilization 49
Effects of A_w on the sporicidal activity of ethylene oxide/ 179
Kinetics of thermal death of bacteria/ 209
Life in extraterrestrial environments/ 144
Potential effects of recent findings on spacecraft steriliza 272
Thermal death of Bacillus subtilis var. niger spores on sele 227
Review of heat specifications/ 225
Services provided in support of planetary quarantine require 128
Services provided in support of planetary quarantine require 130
Sterilization and decontamination. I./ 183
Survival of microorganisms in space/ 190
TOXICOLOGY
Ethylene oxide sterilization, current review of principles 178
TRAINING
Clean room personnel/ 58
course outline/Contamination control 187
manual/Spacecraft sterilization 242

ULTRAHIGH VACUUM
Continuation of development of typical Mars landing capsule 63
ULTRASOUND
Planetary quarantine presentation/ 170
ULTRAVIOLET IRRADIATION
Comparative evaluation of methods for search for life on Mar 166
Life in extraterrestrial environments/ 144
Life in extraterrestrial environments/ 145
ULTRAVIOLET LIGHT
Continuation of development of typical Mars landing capsule 61
Continuation of development of typical Mars landing capsule 62

-96-
ULTRAVIOLET LIGHT (continued)
Continuation of development of typical Mars landing capsule 63
Effect of simulated Martian environment on certain enzymes/ 69
on death of microorganisms/Effects of high intensity visible 104
Planetary quarantine program/ 269
ULTRAVIOLET RADIATION
Survival of microorganisms in space/ 190
UNMANNED PLANETARY MISSIONS
Planetary quarantine provisions for 213
UNMANNED SPACECRAFT
Mariner Mars 1969 flight path design and mission analysis/ 30
RTG shield optimization study/ 295
USSR
Biological experimentation-methods and results/ 14
Experimental substantiation of aerosol method of disinfectio 27
Mars on Earth/ 37
Problems in detection of extraterrestrial life/ 23

VACUUM
Adhesives/ 205
Approach to understanding basic physics involved in meeting 15
Discussion of possible contamination of space with terrestri 91
exposure on potential heat shield materials for unmanned Mar 47
Planetary quarantine presentation/ 170
Preliminary sublimation studies/ 308
probe: new approach to microbiological sampling of surfaces/ 336
probe sampler/Monitoring for particle contamination on surfa 334
(probe) Services provided in support of planetary quarantine 231
(probe surface sampler) Development of new and improved tech 339
probe surface sampler/Microbiological evaluation of the 229
relationships for sterilization of terrestrial spores/Parame 89
relationships for sterilization of terrestrial spores/Parame 90
Unmanned spacecraft RTG shield optimization study/ 295

VAPOR PRESSURE
Effect of dimethyl sulfoxide on sporicidal activity of ethyl 291
VERNERA 4
Buoyant Venus station mission feasibility study for 1972 and 64
Ice caps on Venus/ 35

VENUS
Atmospheres of Mars and 121
Exospheric temperatures on Mars and 161
Frontiers in solar system exobiology/ 264
Ice caps on 35
Life in space/ 36
station mission feasibility study for 1972 and 1973 launch 64
station mission feasibility for 1972 and 1973 launch opportu 99
Sterilizable polymeric materials/ 175
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absorption-desorption of water by bacterial spores and its</td>
<td>260</td>
</tr>
<tr>
<td>Advances in large-volume air sampling</td>
<td>116</td>
</tr>
<tr>
<td>Analytical basis for assaying buried biological contamination</td>
<td>180</td>
</tr>
<tr>
<td>Biological experimentation—methods and results</td>
<td>14</td>
</tr>
<tr>
<td>Biological losses and quarantine policy for Mars</td>
<td>294</td>
</tr>
<tr>
<td>Bacterial response to soil environment</td>
<td>77</td>
</tr>
<tr>
<td>Biostatistics and space exploration: microbiology and steril</td>
<td>113</td>
</tr>
<tr>
<td>Characterization of bacterial populations by means of factor</td>
<td>51</td>
</tr>
<tr>
<td>Continuation of development of typical Mars landing capsule</td>
<td>63</td>
</tr>
<tr>
<td>Control of bacterial contamination of hard surfaces in opera</td>
<td>11</td>
</tr>
<tr>
<td>Cryobiologist’s conjecture of planetary life</td>
<td>270</td>
</tr>
<tr>
<td>Development of ethylene oxide process specifications and pro</td>
<td>167</td>
</tr>
<tr>
<td>Effect of relative humidity on survival of Bacillus subtilis</td>
<td>323</td>
</tr>
<tr>
<td>Effects of high intensity visible and ultraviolet light on</td>
<td>104</td>
</tr>
<tr>
<td>Effects of hyperoxia upon microorganisms. Membrane culture te</td>
<td>7</td>
</tr>
<tr>
<td>Evaluation of quantal response model with variable concentra</td>
<td>114</td>
</tr>
<tr>
<td>Experimental model of bacterial aerosol in dust phase</td>
<td>53</td>
</tr>
<tr>
<td>Germicidal activity of ethylene oxide</td>
<td>218</td>
</tr>
<tr>
<td>Integrated lethality of sterilization temperature profiles</td>
<td>115</td>
</tr>
<tr>
<td>Investigation of methods for sterilization of potting compou</td>
<td>306</td>
</tr>
<tr>
<td>Investigations into diffusion model of dry heat sterilizatio</td>
<td>65</td>
</tr>
<tr>
<td>Kinetics of thermal death of bacteria</td>
<td>209</td>
</tr>
<tr>
<td>Limitations of initiation of germination of bacterial spores</td>
<td>19</td>
</tr>
<tr>
<td>Limitations of thioglycolate broth as sterility test medium</td>
<td>13</td>
</tr>
<tr>
<td>Mathematical models for contamination and pollution predicti</td>
<td>221</td>
</tr>
<tr>
<td>Microbiological control of radiation sterilization of medica</td>
<td>105</td>
</tr>
<tr>
<td>Microbiological evaluation of vacuum probe surface sampler</td>
<td>229</td>
</tr>
<tr>
<td>Microorganisms, alive and imprisoned in a polymer cage</td>
<td>317</td>
</tr>
<tr>
<td>Natural selection of microorganisms in extreme environments</td>
<td>57</td>
</tr>
<tr>
<td>Parametric study to determine time-temperature-vacuum relati</td>
<td>89</td>
</tr>
<tr>
<td>Parametric study to determine time-temperature-vacuum relati</td>
<td>90</td>
</tr>
<tr>
<td>Planetary quarantine presentation</td>
<td>170</td>
</tr>
<tr>
<td>Planetary quarantine program</td>
<td>266</td>
</tr>
<tr>
<td>Planetary quarantine program</td>
<td>267</td>
</tr>
<tr>
<td>Planetary quarantine program</td>
<td>269</td>
</tr>
<tr>
<td>Potential effects of recent findings on spacecraft steriliza</td>
<td>272</td>
</tr>
<tr>
<td>Preliminary sublimation studies</td>
<td>308</td>
</tr>
<tr>
<td>Life in extraterrestrial environments</td>
<td>145</td>
</tr>
<tr>
<td>Rational model for spacecraft sterilization requirements</td>
<td>5</td>
</tr>
<tr>
<td>Recovery of known numbers of microorganisms from surfaces by</td>
<td>12</td>
</tr>
<tr>
<td>Reduction of microbial dissemination</td>
<td>217</td>
</tr>
<tr>
<td>Reduction of microbial dissemination germicidal activity of</td>
<td>216</td>
</tr>
<tr>
<td>Release of microbial contamination from fractured solids</td>
<td>230</td>
</tr>
<tr>
<td>Review of heat specifications</td>
<td>225</td>
</tr>
<tr>
<td>Services provided in support of planetary quarantine require</td>
<td>231</td>
</tr>
</tbody>
</table>
VIABILITY (continued)
Spacecraft component survivability during entry into Martian
Stability of viruses in foods for spaceflights/
Sterilization/
Study of aseptic maintenance by pressurization/
Study of application of laminar flow ventilation to operations
Supposed role of microbiological aerosol stabilizers as an
Survival of microorganisms in space/
Systematic description and key to isolants from Chile-Atacama
Systematic description and key to streptomyces isolants from

VIKING
Investigation of methods for the sterilization of potting compositions
(mission) Planetary quarantine program/
Space programs summary no. 37-60, Vol. 1. Flight projects/
voyage to Mars/1973

VIRAL aerosols and bacterial aerosols/Evaluation of air filters

VIRUS aerosols/Method for determining virus on surfaces contaminated
on surfaces contaminated by them with aerosol method/Experiment
in foods for spaceflights/ Stability of
in liquids/Detection of bacteria and

VOYAGER Interplanetary spacecraft decontamination operations and equ

WATER 1973 Viking voyage to Mars/
activity: use of membrane filter support for test organisms
Apollo lunar module engine exhaust products/
by bacterial spores and its relation to dry heat resistance
(content) Bacterial response to soil environment/
(content) Environmental microbiology as related to planetary
(content) Investigations into a diffusion model of dry heat
cryobiologist's conjecture of planetary life/
Dry heat destruction rates for microorganisms on open surface
Ecology and thermal inactivation of microbes in and on inter
Ecology and thermal inactivation of microbes in and on inter
Ecology and thermal inactivation of microbes in and on inter
Ethylene oxide sterilization, current review of principles
Frontiers in solar system exobiology/
Ice caps on Venus/
Investigation of methods for sterilization of potting compounds
Microbiology studies/
Resistance of organisms to extreme influences in relation to
Soil moisture, relative humidity, and microbial abundance in
Television observations from Mariner 6 and 7/
vapor in its atmosphere/Mars
wide angle gas bearing gyro FGG3345/Sterilizable
Below is an alphabetical list of journals in which articles germane to the Planetary Quarantine Program of NASA's Bioscience Programs have been published. The number of related articles which appeared in each journal is indicated parenthetically.

<table>
<thead>
<tr>
<th>Journal Name</th>
<th>Articles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acta Agr Scand</td>
<td>(1)</td>
</tr>
<tr>
<td>Aeronautical Journal</td>
<td>(1)</td>
</tr>
<tr>
<td>AIHA Journal</td>
<td>(1)</td>
</tr>
<tr>
<td>American Industrial Hygiene Association Journal</td>
<td>(2)</td>
</tr>
<tr>
<td>American Journal of Epidemiology</td>
<td>(1)</td>
</tr>
<tr>
<td>American Journal of Hospital Pharmacy</td>
<td>(1)</td>
</tr>
<tr>
<td>Annals of New York Academy of Sciences</td>
<td>(2)</td>
</tr>
<tr>
<td>Annual Review of Microbiology</td>
<td>(1)</td>
</tr>
<tr>
<td>Antarctic Journal</td>
<td>(2)</td>
</tr>
<tr>
<td>AORN Journal</td>
<td>(1)</td>
</tr>
<tr>
<td>Applied Microbiology</td>
<td>(9)</td>
</tr>
<tr>
<td>Astronautics and Aeronautics</td>
<td>(2)</td>
</tr>
<tr>
<td>Biochim Biophys Acta</td>
<td>(1)</td>
</tr>
<tr>
<td>Biologija i medisina (Russian)</td>
<td>(1)</td>
</tr>
<tr>
<td>Biophysical Journal</td>
<td>(1)</td>
</tr>
<tr>
<td>Bulletin of Parenteral Drug Association</td>
<td>(1)</td>
</tr>
<tr>
<td>Contamination Control</td>
<td>(11)</td>
</tr>
<tr>
<td>Cryobiology</td>
<td>(1)</td>
</tr>
<tr>
<td>Dust Topics</td>
<td>(1)</td>
</tr>
<tr>
<td>Electronic Packaging and Production</td>
<td>(2)</td>
</tr>
<tr>
<td>Food Technology</td>
<td>(1)</td>
</tr>
<tr>
<td>Journal of Applied Bacteriology</td>
<td>(1)</td>
</tr>
<tr>
<td>Journal of Atmospheric Sciences</td>
<td>(1)</td>
</tr>
<tr>
<td>Journal of British Interplanetary Society</td>
<td>(2)</td>
</tr>
<tr>
<td>Journal of Dairy Science</td>
<td>(1)</td>
</tr>
<tr>
<td>Journal of Hospital Research</td>
<td>(1)</td>
</tr>
<tr>
<td>Laboratory Practice (U.K.)</td>
<td>(1)</td>
</tr>
<tr>
<td>Mathematical Biosciences</td>
<td>(1)</td>
</tr>
<tr>
<td>Nature</td>
<td>(3)</td>
</tr>
<tr>
<td>New Scientist</td>
<td>(1)</td>
</tr>
<tr>
<td>Public Health Monograph</td>
<td>(1)</td>
</tr>
<tr>
<td>Science</td>
<td>(1)</td>
</tr>
<tr>
<td>Scientific American</td>
<td>(6)</td>
</tr>
<tr>
<td>Shell Aviation News</td>
<td>(1)</td>
</tr>
<tr>
<td>Space Biology and Medicine</td>
<td>(3)</td>
</tr>
<tr>
<td>Space Life Sciences</td>
<td>(5)</td>
</tr>
<tr>
<td>Technometrics</td>
<td>(1)</td>
</tr>
<tr>
<td>Zh Mikrobiol Epidemiol Immunobiol. (Russian)</td>
<td>(1)</td>
</tr>
</tbody>
</table>
Below is an alphabetical list of proceedings in which articles germane to the Planetary Quarantine Program of NASA's Bioscience Programs have been published. The number of related articles which appeared in each journal is indicated parenthetically.

American Association for Contamination Control. 7th Annual Technical Meeting and Exhibit, Chicago, 13-16 May 1968. Boston, American Association for Contamination Control, 1968. (1)

Bacteriological Proceedings of the American Society for Microbiology. 69th Annual Meeting, Miami Beach, 4-9 May 1969. (8)

