SCIENTIFIC PUBLICATIONS AND PRESENTATIONS RELATING TO PLANETARY QUARANTINE

Volume V
The 1970 Supplement

August 1971

BIOLOGICAL SCIENCES COMMUNICATION PROJECT
THE GEORGE WASHINGTON UNIVERSITY MEDICAL CENTER
2001 S STREET, N.W., WASHINGTON, D.C. 20009
Telephone (202) 462-5828
SCIENTIFIC PUBLICATIONS AND PRESENTATIONS
RELATING TO PLANETARY QUARANTINE

PLANETARY QUARANTINE OFFICE
PLANETARY PROGRAMS
OFFICE OF SPACE SCIENCE AND APPLICATIONS
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Volume V
The 1970 Supplement

by

Frank D. Bradley, B.A., M.A.
Margaret F. Werts, B.A.

C.W. Shilling, M.D., Director
Biological Sciences Communication Project
The Medical Center
THE GEORGE WASHINGTON UNIVERSITY
Washington, D.C.

Work Performed under NASA Contract
NSR-09-010-027

August 1971
PREFACE

This compilation is the fourth annual supplement to the original bibliography issued in June, 1967, entitled Scientific Publications of the Biosciences Programs Division, National Aeronautics and Space Administration, Volume V. Planetary Quarantine.

The annual supplements consist of citations of documents relating to planetary quarantine; many, but not all, refer to work supported by the Planetary Quarantine Office, Planetary Programs, National Aeronautics and Space Administration, Washington, D.C. While they are compiled primarily to bring up to date our survey of the literature in the field, it will be noted that there is also a heavy back gathering of references not previously included. Some of these ante-date the formation of NASA, but are of substantive or historical value to the planetary quarantine program.

In certain references, numerals preceded by the letter A, AD, N, X, NASA-CR, NASA-SP, or NASA-TM-X are given parenthetically as part of the citation. These numbers will implement the procurement of the document. Those carrying "A" numbers are obtainable, for a fee, from the American Institute of Aeronautics and Astronautics, Inc. Technical Information Service 750 Third Avenue New York, New York 10017

"X" numbered documents are limited in their distribution to NASA associated or contractor personnel. "AD" coded documents are generally available from the Defense Documentation Center Cameron Station Alexandria, Virginia 22314

The authors wish to acknowledge with gratitude the able and tireless assistance of Miss Susan E. Dugan in the preparation of this bibliography.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>iii</td>
</tr>
<tr>
<td>Citations</td>
<td>1</td>
</tr>
<tr>
<td>Author Index</td>
<td>53</td>
</tr>
<tr>
<td>Permutated Title Index</td>
<td>59</td>
</tr>
<tr>
<td>Journals Publishing</td>
<td></td>
</tr>
<tr>
<td>Planetary Quarantine Related Articles</td>
<td>108</td>
</tr>
<tr>
<td>Proceedings Publishing</td>
<td></td>
</tr>
<tr>
<td>Planetary Quarantine Related Articles</td>
<td>110</td>
</tr>
<tr>
<td>Corporate Sources</td>
<td>114</td>
</tr>
</tbody>
</table>
CITATIONS

1939

1945

1949

1951

1954

1957

1958

1959

1961

44. HAWRYLEWICZ, E.J. and R. Ehrlich. Studies with microorganisms and plants under simulated Martian environments. Presented at the Symposium on extraterrestrial biochemistry and biology, 128th meeting of the American Association for the Advancement of Science, Denver, December 1961.

1962

56. GAMBILL, V.M. Bacterial penetration of the millipore microtube cartridge filter. U.S. Army, Fort Detrick. 8 October 1962.

1963

75. NORTH AMERICAN AVIATION, INCORPORATED. Ultrasonic cleaning: A bibliography. SID-63-167. 1 March 1963. (N63-23353)

77. PORTNER, D.M. Microbial contamination obtained on surfaces exposed to room air or touched by the human hand. U.S. Army, Fort Detrick Protection Branch Report of Test No. 1-64. 22 July 1963.

87. YALOF, S. Compatibility of Centaur/Surveyor materials with Freon-12 ethylene oxide sterilant gases. 4th quarterly report. MGG-299. General Dynamics Astronautics. 27 May 1963. (AD 405 179)

1964

1965

120. COMMUNICABLE DISEASE CENTER. Services provided in support of the planetary quarantine requirements of NASA. Reduction of bacterial dissemination; germicidal activity of ethylene oxide; reduction of bacterial contamination on surfaces. 5th quarterly report. Department of Health, Education and Welfare, Public Health Service, Atlanta. 12 November 1965.

133. HALL, L.B. Spacecraft sterilization - A new engineering and sanitation technology. Presented at the annual meeting of the American Public Health Association, Chicago, October 1965.

134. HALL, L.B. Spacecraft sterilization and the prevention of planetary contamination. Presented at the 65th annual meeting of the American Society for Microbiology, Atlantic City, April 1965.

1966

174. BOLLEN, W.B. Systematic description of bacterial isolants from rigorous environments. Prepared for Jet Propulsion Laboratory by Oregon State University. 1 April 1966.

-17-

182. CORNELL, R.G. A nomenclature of symbols relevant to the probability of contaminating Mars. TR 5. Florida State University, Department of Statistics. 24 August 1966. (NASA-CR-77753)

183. CORNELL, R.G. Sterilization requirements. TR 1. Florida State University, Department of Statistics. 14 February 1966. (NASA-CR-704790)

184. COSPAR CONSULTATIVE GROUP, CHAIRMAN. Potentially harmful effects of space experiments. In: Minutes of the meeting of the Executive Committee on Space Research at the 9th meeting of COSPAR, Vienna, May 1966.

188. FARMER, F.H. Microbiological contamination control in spacecraft sterilization. Presented at the Sterilization Technology Symposium at the 13th annual technical meeting of the Institute of Environmental Sciences, San Diego, April 1966.

205. MAGISTRALE, V.J. Engineering problems in capsule sterilization. Astronautics and Aeronautics 4:80-84; February 1966. (A66-20249)

229. STEVENS, J. Environmental specification Voyager capsule flight equipment type approval and flight acceptance test procedures for the heat sterilization and ethylene oxide decontamination environments. VOL-50503-ETS. Jet Propulsion Laboratory. 12 January 1966.

AUSTIN, P.R. Spacecraft preparation and sterilization as state of the art. Contamination Control 6:32,34,35. August 1967. (A67-36804)

BOTAN, E.A. and T.H. Rider. Experimental Assembly and Sterilization Lab (EASL) microbiological assay and certification of spacecraft hardware sterility. EASL 300.01 (Supersedes EASL 300.00) AVSSD-0134-67-CR Prepared for Jet Propulsion Laboratory by Avco Corporation. 15 April 1967. (N68-22635)

268. NATIONAL COMMUNICABLE DISEASE CENTER. Services provided in support of the planetary quarantine requirements of NASA. Reduction of microbial dissemination; germicidal activity of ethylene oxide; reduction of microbial contamination on surfaces. Evaluation of leakage of microbial contamination from Gemini space suits. 8th quarterly report. Department of Health, Education and Welfare, Public Health Service, Atlanta. 8 April 1967.

1968

1969

NATIONAL COMMUNICABLE DISEASE CENTER. Services provided in support of
the planetary quarantine requirements of NASA; germicidal
activity of ethylene oxide; reduction of microbial dissemination.
11th summary report of progress. Department of Health,
January 1969.

NELSON, B.A. Mathematical models for contamination and pollution
prediction. Presented at the 15th annual technical meeting of
the Institute of Environmental Sciences, Anaheim, Cal., April 1969.

Semiannual review of research and advanced development, Vol.I,

PFLUG, I.J., Ed. Environmental microbiology as related to planetary
quarantine. Semiannual progress report No.3. University of
Minnesota, School of Public Health, December 1969.
(NASA-CR-110431).

SCHALKOWSKY, S. Ninth monthly status report on Contract NASw-1734.
Exotech Incorporated. 29 January 1969.

STERILIZATION GROUP. Sterilization supporting activities. In:
Semiannual review of research and advanced development, Vol.I,

TAYLOR, D.M. and G.H. Redmann. Biological monitoring of the capsule
mechanical training model during assembly in the sterilization
assembly development laboratory. Doc.611-7. Jet Propulsion
Laboratory. 25 August 1969.

TAYLOR, D.M., G.M. Renninger and M.D. Wardle. A feasibility study of
liquid sterile insertion. Doc.611-5. Jet Propulsion Laboratory.
21 July 1969.

VESLEY, D., M. Halbert, I.J. Pflug, J. Ramquist and S. Fowler. Dry
heat destruction rates of microorganisms on surfaces as a
function of relative humidity. In: Pflug, I.J., Ed. Environ-
mental microbiology as related to planetary quarantine. Semiannual
progress report No.3, p.51-68. University of Minnesota,
School of Public Health, December 1969.

VESLEY, D., G. Smith, J. Haugen and Y. Thun. Survival of microbial
spores under several temperature and humidity conditions. In:
Pflug, I.J., Ed. Environmental microbiology as related to
University of Minnesota, School of Public Health, December 1969.

1970

393. **CAMERON, R.E., F.A. Morelli and H.P. Conrow.** Survival of microorganisms in desert soil exposed to five years of continuous very high vacuum. TR 32-1454. Jet Propulsion Laboratory. 15 March 1970.

399. CORNELL, R.G. Biostatistics of space exploration: Microbiology and sterilization. Progress report. Florida State University, Department of Statistics. 1 April 1970.

EXOTECH, INCORPORATED. Planning, evaluation and analytical studies in planetary quarantine and spacecraft sterilization. 1st quarterly report. 15 June 1970. (NASA-CR-112501)
<table>
<thead>
<tr>
<th>No.</th>
<th>Author/Institution</th>
<th>Title</th>
<th>Date</th>
</tr>
</thead>
</table>

462. JET PROPULSION LABORATORY. Semiannual review of research and advanced

463. JET PROPULSION LABORATORY. Semiannual review of research and advanced

464. JET PROPULSION LABORATORY. Sterilizable accelerometer development

465. KEMP, H.T. and C.W. Cooper. Investigation of spacecraft materials that
(NASA-CR-113798)

466. KERELUK, K., R.A. Gammon and R.S. Lloyd. Microbiological aspects of
ethylene oxide sterilization. I. Experimental apparatus and

467. KERELUK, K., R.A. Gammon and R.S. Lloyd. Microbiological aspects
of ethylene oxide sterilization. II. Microbial resistance to

468. KERELUK, K., R.A. Gammon and R.S. Lloyd. Microbiological aspects
of ethylene oxide sterilization. III. Effects of humidity
and water activity on the sporicidal activity of ethylene

469. KERELUK, K., R.A. Gammon and R.S. Lloyd. Microbiological aspects
of ethylene oxide sterilization. IV. Influence of thickness of
polyethylene film on the sporicidal activity of ethylene

In: Semiannual review of research and advanced development.
Doc. 701-90, p.219-223. Jet Propulsion Laboratory. 31
August 1970.

471. LACY, G.H., R.E. Cameron, R.B. Hanson and F.A. Morelli. Microbiological
analysis of snow and ice from the Antarctic interior. Antarctic

472. LeDOUX, F.N. Bibliography. Codes, standards, procedures, specifications
and reports relating to contamination control. X-723-70-220.

473. LEVIN, G.V. Contamination and sterilization. Presented at the NASA
Bio-Space Technology Training Program, Wallops Island, Va.,
August 1970.

523. SIVINSKI, H.D. Laminar air flow in planetary quarantine. Presented at the 10th international congress for microbiology, Mexico City, August 14, 1970.

<table>
<thead>
<tr>
<th>Author/Institution</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcamo, I.E.</td>
<td>220</td>
</tr>
<tr>
<td>Alder, V.G.</td>
<td>163</td>
</tr>
<tr>
<td>Alexander, A.</td>
<td>66,109</td>
</tr>
<tr>
<td>Allen, H.F.</td>
<td>19</td>
</tr>
<tr>
<td>Allen, H.N.</td>
<td>337</td>
</tr>
<tr>
<td>Allen, J.</td>
<td>88</td>
</tr>
<tr>
<td>Ames Research Center</td>
<td>164</td>
</tr>
<tr>
<td>Anderson, B.I.</td>
<td>299</td>
</tr>
<tr>
<td>Anderson, B.T.</td>
<td>447</td>
</tr>
<tr>
<td>Anderson, O.A.</td>
<td>254</td>
</tr>
<tr>
<td>Angelotti, R.</td>
<td>10,11,111,112, 165,166,167, 168,235,284</td>
</tr>
<tr>
<td>Anthony, H.V.</td>
<td>170</td>
</tr>
<tr>
<td>Arnett, J.C.</td>
<td>238,321</td>
</tr>
<tr>
<td>Arnsberger, R.J.</td>
<td>176</td>
</tr>
<tr>
<td>Astafyeva, A.K.</td>
<td>239</td>
</tr>
<tr>
<td>Auerbach, E.E.</td>
<td>171</td>
</tr>
<tr>
<td>Austin, P.R.</td>
<td>240</td>
</tr>
<tr>
<td>Bandaruk, W.</td>
<td>216</td>
</tr>
<tr>
<td>Bansal, A.K.</td>
<td>402</td>
</tr>
<tr>
<td>Barlow, L.E.</td>
<td>187</td>
</tr>
<tr>
<td>Barnett, J.W.</td>
<td>272</td>
</tr>
<tr>
<td>Barrett, M.J.</td>
<td>377</td>
</tr>
<tr>
<td>Barrett, R.</td>
<td>108</td>
</tr>
<tr>
<td>Beakley, J.W.</td>
<td>375</td>
</tr>
<tr>
<td>Bearman, J.E.</td>
<td>137</td>
</tr>
<tr>
<td>Beeby, M.M.</td>
<td>113</td>
</tr>
<tr>
<td>Behringer, N.W.</td>
<td>308</td>
</tr>
<tr>
<td>Bejuki, W.M.</td>
<td>20</td>
</tr>
<tr>
<td>Bell, J.</td>
<td>88,110</td>
</tr>
<tr>
<td>Beller, W.S.</td>
<td>172</td>
</tr>
<tr>
<td>Benner, F.C.</td>
<td>80</td>
</tr>
<tr>
<td>Berman, B.</td>
<td>285</td>
</tr>
<tr>
<td>Beyerle, F.J.</td>
<td>276</td>
</tr>
<tr>
<td>Billick, I.H.</td>
<td>64</td>
</tr>
<tr>
<td>Biological Contamination Control Committee</td>
<td>173</td>
</tr>
<tr>
<td>Blair, P.M.</td>
<td>114</td>
</tr>
<tr>
<td>Blank, G.B.</td>
<td>178,338,390</td>
</tr>
<tr>
<td>Blum, P.</td>
<td>108</td>
</tr>
<tr>
<td>Bollen, W.B.</td>
<td>174,378</td>
</tr>
<tr>
<td>Bomar, M.</td>
<td>286</td>
</tr>
<tr>
<td>Bond, W.W.</td>
<td>379</td>
</tr>
<tr>
<td>Borick, P.M.</td>
<td>241</td>
</tr>
<tr>
<td>Botan, E.A.</td>
<td>175,242,260</td>
</tr>
<tr>
<td>Boucher, R.M.G.</td>
<td>220,243</td>
</tr>
<tr>
<td>Bourrieau, J.C.</td>
<td>380</td>
</tr>
<tr>
<td>Bradley, F.D.</td>
<td>381</td>
</tr>
<tr>
<td>Brady, H.F.</td>
<td>287</td>
</tr>
<tr>
<td>Brannen, J.P.</td>
<td>244,382,383, 384,385</td>
</tr>
<tr>
<td>Braswell, J.R.</td>
<td>386</td>
</tr>
<tr>
<td>Brewer, J.H.</td>
<td>176,319</td>
</tr>
<tr>
<td>Brewer, W.A.</td>
<td>245</td>
</tr>
<tr>
<td>Brill, J.N.</td>
<td>387</td>
</tr>
<tr>
<td>Brown, A.M.</td>
<td>163</td>
</tr>
<tr>
<td>Bruch, C.W.</td>
<td>40,41,51,67, 89, 131,132,211,388</td>
</tr>
<tr>
<td>Bruch, M.K.</td>
<td>67,388</td>
</tr>
<tr>
<td>Brueschke, E.E.</td>
<td>42</td>
</tr>
<tr>
<td>Bryce, A.J.</td>
<td>298</td>
</tr>
<tr>
<td>Buchanan, H.</td>
<td>69</td>
</tr>
<tr>
<td>Buchanan, L.M.</td>
<td>52,68,70,194</td>
</tr>
<tr>
<td>Bursey, C.H.</td>
<td>288</td>
</tr>
<tr>
<td>Busch, K.A.</td>
<td>10</td>
</tr>
<tr>
<td>Busta, F.F.</td>
<td>125,126</td>
</tr>
<tr>
<td>California, University of</td>
<td>115</td>
</tr>
<tr>
<td>Calof, R.</td>
<td>177</td>
</tr>
<tr>
<td>Cameron, R.E.</td>
<td>178,338,339, 389,390,391, 392,393,471</td>
</tr>
<tr>
<td>Campbell, J.E.</td>
<td>394</td>
</tr>
<tr>
<td>Campbell, R.W.</td>
<td>340</td>
</tr>
<tr>
<td>Caputo, R.S.</td>
<td>395</td>
</tr>
<tr>
<td>Cargo, G.T.</td>
<td>79</td>
</tr>
<tr>
<td>Casey, E.F.</td>
<td>341</td>
</tr>
<tr>
<td>Cephus, M.L.</td>
<td>447</td>
</tr>
<tr>
<td>Chamberlain, R.G.</td>
<td>289</td>
</tr>
<tr>
<td>Name</td>
<td>Page Numbers</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Cheater, D.J.</td>
<td>396</td>
</tr>
<tr>
<td>Cheron, T.</td>
<td>149</td>
</tr>
<tr>
<td>Christensen, M.R.</td>
<td>144, 145, 217,</td>
</tr>
<tr>
<td></td>
<td>342, 397, 398, 526</td>
</tr>
<tr>
<td>Claghorn, A.</td>
<td>179</td>
</tr>
<tr>
<td>Clapper, W.E.</td>
<td>210</td>
</tr>
<tr>
<td>Clemedson, C.J.</td>
<td>53</td>
</tr>
<tr>
<td>Coleman, S.</td>
<td>157</td>
</tr>
<tr>
<td>Communicable Disease</td>
<td>90, 116, 117, 118, 119, 120, 180, 181</td>
</tr>
<tr>
<td>Center</td>
<td></td>
</tr>
<tr>
<td>Comuntzis, M.G.</td>
<td>21</td>
</tr>
<tr>
<td>Conrow, H.P.</td>
<td>393</td>
</tr>
<tr>
<td>Cooley, W.C.</td>
<td>121, 249, 250</td>
</tr>
<tr>
<td>Cooper, C.W.</td>
<td>465</td>
</tr>
<tr>
<td>Cordaro, J.T.</td>
<td>69</td>
</tr>
<tr>
<td>Cornell, R.G.</td>
<td>182, 183, 246, 399,</td>
</tr>
<tr>
<td></td>
<td>400, 401, 402, 492, 493</td>
</tr>
<tr>
<td>Cospar Consultative Group, Chairman</td>
<td>184</td>
</tr>
<tr>
<td>Courtney, W.J.</td>
<td>290</td>
</tr>
<tr>
<td>Craven, C.W.</td>
<td>185, 247, 259</td>
</tr>
<tr>
<td>Crawford, J.G.</td>
<td>186</td>
</tr>
<tr>
<td>Crawford, R.G.</td>
<td>160, 161</td>
</tr>
<tr>
<td>Crawford, R.L.</td>
<td>248</td>
</tr>
<tr>
<td>Cuddihy, E.F.</td>
<td>291</td>
</tr>
<tr>
<td>Czarnecki, E.G.</td>
<td>187</td>
</tr>
<tr>
<td>Davies, M.E.</td>
<td>264</td>
</tr>
<tr>
<td>Davies, N.S.</td>
<td>80</td>
</tr>
<tr>
<td>Davies, R.W.</td>
<td>21</td>
</tr>
<tr>
<td>Davis, D.P.</td>
<td>292</td>
</tr>
<tr>
<td>Davis, N.S.</td>
<td>122</td>
</tr>
<tr>
<td>Dawson, F.W.</td>
<td>14, 22</td>
</tr>
<tr>
<td>Deal, P.H.</td>
<td>88, 110</td>
</tr>
<tr>
<td>DeArmon, I.A., Jr.</td>
<td>12</td>
</tr>
<tr>
<td>Decker, H.M.</td>
<td>23, 68, 70</td>
</tr>
<tr>
<td>DeGraff, E.D.</td>
<td>249, 250, 293,</td>
</tr>
<tr>
<td></td>
<td>294, 325</td>
</tr>
<tr>
<td>Deindorfer, F.H.</td>
<td>15, 16, 43</td>
</tr>
<tr>
<td>Depbolt, A.</td>
<td>177</td>
</tr>
<tr>
<td>Descamp, V.A.</td>
<td>337</td>
</tr>
<tr>
<td>Devaney, J.R.</td>
<td>389</td>
</tr>
<tr>
<td>Dillon, R.T., Sr.</td>
<td>403</td>
</tr>
<tr>
<td>Dimitrov, M.</td>
<td>238, 404, 405</td>
</tr>
<tr>
<td>Doblely, W., Jr.</td>
<td>288</td>
</tr>
<tr>
<td>Doyle, J.E.</td>
<td>406</td>
</tr>
<tr>
<td>Drew, J.G.</td>
<td>170</td>
</tr>
<tr>
<td>Drummond, D.W.</td>
<td>123, 145, 251,</td>
</tr>
<tr>
<td></td>
<td>343, 407, 408</td>
</tr>
<tr>
<td>Duffy, W.T.</td>
<td>146</td>
</tr>
<tr>
<td>Dugan, V.L.</td>
<td>375, 409, 410, 411,</td>
</tr>
<tr>
<td></td>
<td>412</td>
</tr>
<tr>
<td>Dumas, E.J.</td>
<td>124</td>
</tr>
<tr>
<td>Dunn, C.B.</td>
<td>80, 108</td>
</tr>
<tr>
<td>Dynamic Science</td>
<td>91</td>
</tr>
<tr>
<td>Corporation</td>
<td></td>
</tr>
<tr>
<td>Eckman, P.K.</td>
<td>264</td>
</tr>
<tr>
<td>Edwards, J.L., Jr.</td>
<td>125, 126</td>
</tr>
<tr>
<td>Edwards, T.R.</td>
<td>413</td>
</tr>
<tr>
<td>Ehrlich, R.</td>
<td>44, 57</td>
</tr>
<tr>
<td>Elbaz, J.C.</td>
<td>380</td>
</tr>
<tr>
<td>Ernst, R.R.</td>
<td>54, 55, 79, 94, 127,</td>
</tr>
<tr>
<td></td>
<td>406</td>
</tr>
<tr>
<td>Ervin, G.F.</td>
<td>414, 415</td>
</tr>
<tr>
<td>Esselen, W.B.</td>
<td>8</td>
</tr>
<tr>
<td>Ewing, M.L.</td>
<td>299</td>
</tr>
<tr>
<td>Exotech, Inc.</td>
<td>344, 416, 417,</td>
</tr>
<tr>
<td></td>
<td>418, 419</td>
</tr>
<tr>
<td>Exotech Systems, Inc.</td>
<td>420, 421, 422, 423,</td>
</tr>
<tr>
<td></td>
<td>424, 425, 426, 427,</td>
</tr>
<tr>
<td></td>
<td>428, 429, 430</td>
</tr>
<tr>
<td>Farabee, L.B.</td>
<td>431, 432</td>
</tr>
<tr>
<td>Farmer, F.H.</td>
<td>188, 345, 433</td>
</tr>
<tr>
<td>Faugere, J.F.</td>
<td>380</td>
</tr>
<tr>
<td>Favero, M.S.</td>
<td>128, 211, 223, 346,</td>
</tr>
<tr>
<td></td>
<td>379, 434, 435, 436,</td>
</tr>
<tr>
<td></td>
<td>437, 438, 439</td>
</tr>
<tr>
<td>Fedorova, R.T.</td>
<td>92</td>
</tr>
<tr>
<td>Fernelius, A.L.</td>
<td>12</td>
</tr>
<tr>
<td>Fields, N.D.</td>
<td>499, 500</td>
</tr>
<tr>
<td>Finkelstein, H.</td>
<td>367</td>
</tr>
<tr>
<td>Fischell, R.E.</td>
<td>440</td>
</tr>
<tr>
<td>Fogarty, M.G.</td>
<td>241</td>
</tr>
<tr>
<td>Fort Detrick</td>
<td>189, 295, 348, 349</td>
</tr>
<tr>
<td>Fotter, M.J.</td>
<td>10, 11</td>
</tr>
<tr>
<td>Fowler, S.</td>
<td>372</td>
</tr>
<tr>
<td>Fox, D.G.</td>
<td>441</td>
</tr>
<tr>
<td>Fox, G.W.</td>
<td>93</td>
</tr>
<tr>
<td>Fraser, S.J.</td>
<td>487</td>
</tr>
<tr>
<td>Fried, E.</td>
<td>129, 161, 296</td>
</tr>
<tr>
<td>Gambill, V.M.</td>
<td>56</td>
</tr>
<tr>
<td>Gammon, R.A.</td>
<td>297, 310, 466,</td>
</tr>
<tr>
<td></td>
<td>467, 468, 469</td>
</tr>
<tr>
<td>Name</td>
<td>Page Numbers</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Gardner, J.F.</td>
<td>323</td>
</tr>
<tr>
<td>Garst, D.M.</td>
<td>350,351,374,442, 506</td>
</tr>
<tr>
<td>Gautraud, J.A.</td>
<td>175</td>
</tr>
<tr>
<td>Gavin, W.R.</td>
<td>510</td>
</tr>
<tr>
<td>Gelezumas, V.L.</td>
<td>298</td>
</tr>
<tr>
<td>Gemme, I.</td>
<td>149</td>
</tr>
<tr>
<td>General Electric Company</td>
<td>252</td>
</tr>
<tr>
<td>Giarmnanco, R.P.</td>
<td>80,108</td>
</tr>
<tr>
<td>Gibson, W.C.</td>
<td>443</td>
</tr>
<tr>
<td>Gillespie, W.A.</td>
<td>163</td>
</tr>
<tr>
<td>Gillis, J.R.</td>
<td>296,308</td>
</tr>
<tr>
<td>Glass, A.A.</td>
<td>253</td>
</tr>
<tr>
<td>Goddard, K.R.</td>
<td>70</td>
</tr>
<tr>
<td>Goddard Space Flight Center</td>
<td>190</td>
</tr>
<tr>
<td>Goppers, V.</td>
<td>271,352,444</td>
</tr>
<tr>
<td>Gove, R.</td>
<td>482</td>
</tr>
<tr>
<td>Gowdy, B.</td>
<td>57</td>
</tr>
<tr>
<td>Graves, R.C.</td>
<td>499</td>
</tr>
<tr>
<td>Green, R.H.</td>
<td>270,353,445,470</td>
</tr>
<tr>
<td>Greene, V.W.</td>
<td>254</td>
</tr>
<tr>
<td>Grigor'yev, Yu.G.</td>
<td>354</td>
</tr>
<tr>
<td>Grumman Aerospace Corporation</td>
<td>446</td>
</tr>
<tr>
<td>Gustan, E.A.</td>
<td>270</td>
</tr>
<tr>
<td>Hagen, C.A.</td>
<td>130,290,299,447</td>
</tr>
<tr>
<td>Halbert, M.M.</td>
<td>137,372,448, 531</td>
</tr>
<tr>
<td>Hall, H.E.</td>
<td>500</td>
</tr>
<tr>
<td>Hall, L.B.</td>
<td>70,95,96,131,132, 133,134,191,192,193,259,449</td>
</tr>
<tr>
<td>Hamer, J.</td>
<td>177</td>
</tr>
<tr>
<td>Hansen, W.</td>
<td>135</td>
</tr>
<tr>
<td>Hanson, R.B.</td>
<td>392,471</td>
</tr>
<tr>
<td>Harmon, L.G.</td>
<td>17</td>
</tr>
<tr>
<td>Haugen, J.</td>
<td>343,362,373,531</td>
</tr>
<tr>
<td>Hawes, S.R.</td>
<td>135</td>
</tr>
<tr>
<td>Hawrylewicz, E.J.</td>
<td>44,57,290, 299,447</td>
</tr>
<tr>
<td>Hayward, J.M.</td>
<td>272</td>
</tr>
<tr>
<td>Hearn, H.J.</td>
<td>14</td>
</tr>
<tr>
<td>Hemenway, C.L.</td>
<td>255,303,311</td>
</tr>
<tr>
<td>Hoffman, A.R.</td>
<td>274,300,328, 353,366,445,450,451,452</td>
</tr>
<tr>
<td>Hoffman, R.K.</td>
<td>13,14,22,23, 36,38,68,155,194,301,386,453, 454</td>
</tr>
<tr>
<td>Hohmann, J.P.</td>
<td>18</td>
</tr>
<tr>
<td>Holdridge, D.B.</td>
<td>403</td>
</tr>
<tr>
<td>Hollander, M.</td>
<td>455</td>
</tr>
<tr>
<td>Homsey, R.J.</td>
<td>396</td>
</tr>
<tr>
<td>Horowitz, N.H.</td>
<td>195,338,390</td>
</tr>
<tr>
<td>Hotchin, J.H.</td>
<td>255,302,303,311</td>
</tr>
<tr>
<td>Houser, C.P.</td>
<td>304</td>
</tr>
<tr>
<td>Hueschen, R.M.</td>
<td>345</td>
</tr>
<tr>
<td>Hughes, L.W.</td>
<td>375</td>
</tr>
<tr>
<td>Humphrey, A.E.</td>
<td>15,16,43</td>
</tr>
<tr>
<td>Hurgeton, J.C.</td>
<td>275</td>
</tr>
<tr>
<td>Imshenetsky, A.A.</td>
<td>456</td>
</tr>
<tr>
<td>Ingles, J.B.</td>
<td>211</td>
</tr>
<tr>
<td>Irons, A.S.</td>
<td>97,353,355,457,458</td>
</tr>
<tr>
<td>Ivanov, P.P.</td>
<td>354</td>
</tr>
<tr>
<td>Jacobs, R.A.</td>
<td>136</td>
</tr>
<tr>
<td>Jaffe, L.D.</td>
<td>58,71,72,98</td>
</tr>
<tr>
<td>Jakshina, V.M.</td>
<td>456</td>
</tr>
<tr>
<td>James, Mrs. A.N., Jr.</td>
<td>304,356</td>
</tr>
<tr>
<td>Janssen, R.J.</td>
<td>22</td>
</tr>
<tr>
<td>Jefferson, R.M.</td>
<td>459</td>
</tr>
<tr>
<td>Jenkins, D.W.</td>
<td>285</td>
</tr>
<tr>
<td>Jet Propulsion Laboratory</td>
<td>24,99,256,357, 358,460,461,462,463,464</td>
</tr>
<tr>
<td>Johnson, D.F.</td>
<td>520</td>
</tr>
<tr>
<td>Jones, D.L.</td>
<td>196</td>
</tr>
<tr>
<td>Kabat, H.F.</td>
<td>85</td>
</tr>
<tr>
<td>Kales, P.A.</td>
<td>245</td>
</tr>
<tr>
<td>Kalfayan, S.H.</td>
<td>228,257,305</td>
</tr>
<tr>
<td>Kallings, L.O.</td>
<td>306</td>
</tr>
<tr>
<td>Kaufmann, O.W.</td>
<td>17</td>
</tr>
<tr>
<td>Kautz, G.P.</td>
<td>197</td>
</tr>
<tr>
<td>Kaye, S.</td>
<td>3,4,5,307</td>
</tr>
<tr>
<td>Keenan, K.M.</td>
<td>137</td>
</tr>
<tr>
<td>Kemp, H.T.</td>
<td>465</td>
</tr>
<tr>
<td>Kemper, K.M.</td>
<td>378</td>
</tr>
<tr>
<td>Kepple, R.J.</td>
<td>129</td>
</tr>
<tr>
<td>Kereluk, K.</td>
<td>297,310,466,467, 468,469</td>
</tr>
<tr>
<td>Kessler, D.</td>
<td>177</td>
</tr>
<tr>
<td>Kikiforova, E.N.</td>
<td>334</td>
</tr>
<tr>
<td>Kline, R.C.</td>
<td>325</td>
</tr>
<tr>
<td>Knight, R.D.</td>
<td>321</td>
</tr>
<tr>
<td>Name</td>
<td>Page Numbers</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Knittell, M.</td>
<td>470</td>
</tr>
<tr>
<td>Koesterer, M.G.</td>
<td>59, 67, 73, 101, 102, 138, 308</td>
</tr>
<tr>
<td>Koukol, R.</td>
<td>526</td>
</tr>
<tr>
<td>Kozlovsky, V.K.</td>
<td>282, 283</td>
</tr>
<tr>
<td>Kretz, A.P., Jr.</td>
<td>94</td>
</tr>
<tr>
<td>Kusznirka, L.A.</td>
<td>456</td>
</tr>
<tr>
<td>Lacy, G.H.</td>
<td>392, 471</td>
</tr>
<tr>
<td>Laible, N.</td>
<td>507, 530</td>
</tr>
<tr>
<td>Langley Research Center</td>
<td>198, 199</td>
</tr>
<tr>
<td>Larue, E.F.</td>
<td>170</td>
</tr>
<tr>
<td>Lassegard, W.E.</td>
<td>359</td>
</tr>
<tr>
<td>Latham, A.B.</td>
<td>18</td>
</tr>
<tr>
<td>Leaman, A.B.</td>
<td>200</td>
</tr>
<tr>
<td>Lederberg, J.</td>
<td>309, 324</td>
</tr>
<tr>
<td>LeDoux, F.N.</td>
<td>103, 139, 140, 258, 472</td>
</tr>
<tr>
<td>Leventhal, E.L.</td>
<td>74</td>
</tr>
<tr>
<td>Levin, G.V.</td>
<td>473, 474</td>
</tr>
<tr>
<td>Levinthal, E.C.</td>
<td>309, 324</td>
</tr>
<tr>
<td>Levora, N.W.</td>
<td>201</td>
</tr>
<tr>
<td>Levy, P.S.</td>
<td>518</td>
</tr>
<tr>
<td>Lewis, K.H.</td>
<td>10</td>
</tr>
<tr>
<td>Lewis, T.M.</td>
<td>360</td>
</tr>
<tr>
<td>Libby, W.F.</td>
<td>475</td>
</tr>
<tr>
<td>Light, J.O.</td>
<td>185, 259</td>
</tr>
<tr>
<td>Lincoln, R.E.</td>
<td>12</td>
</tr>
<tr>
<td>Lindell, K.F.</td>
<td>374, 442, 507</td>
</tr>
<tr>
<td>Lion, K.S.</td>
<td>25</td>
</tr>
<tr>
<td>Litsky, W.</td>
<td>9</td>
</tr>
<tr>
<td>Lloyd, R.S.</td>
<td>297, 310, 466, 467, 468, 469</td>
</tr>
<tr>
<td>Lockyear, W.H.</td>
<td>202</td>
</tr>
<tr>
<td>Long, M.E.</td>
<td>396</td>
</tr>
<tr>
<td>Lorenz, P.</td>
<td>255, 303, 311</td>
</tr>
<tr>
<td>Lorsch, H.G.</td>
<td>203</td>
</tr>
<tr>
<td>Louderback, A.L.</td>
<td>105</td>
</tr>
<tr>
<td>Lunney, E.J.</td>
<td>260</td>
</tr>
<tr>
<td>Lutwack, R.</td>
<td>204, 312</td>
</tr>
<tr>
<td>Lyle, R.C.</td>
<td>261, 313</td>
</tr>
<tr>
<td>Lynch, V.H.</td>
<td>135</td>
</tr>
<tr>
<td>Magistrale, V.J.</td>
<td>123, 141, 143, 145, 205</td>
</tr>
<tr>
<td>Maki, S.</td>
<td>448, 531</td>
</tr>
<tr>
<td>Mandro夫sky, B.</td>
<td>206</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann, B.</td>
<td>69</td>
</tr>
<tr>
<td>Manufacturing Chemists</td>
<td></td>
</tr>
<tr>
<td>Association</td>
<td>7</td>
</tr>
<tr>
<td>Markussen, A.</td>
<td>255</td>
</tr>
<tr>
<td>Marshall, B.J.</td>
<td>476</td>
</tr>
<tr>
<td>Marshall, J.H.</td>
<td>128, 379</td>
</tr>
<tr>
<td>Marshall Space Flight</td>
<td></td>
</tr>
<tr>
<td>Center</td>
<td>142, 207, 208, 209, 361</td>
</tr>
<tr>
<td>Marten, R.A.</td>
<td>262</td>
</tr>
<tr>
<td>Martin, K.</td>
<td>477, 478</td>
</tr>
<tr>
<td>McDade, J.J.</td>
<td>100, 143, 144, 145, 185, 210, 211, 375</td>
</tr>
<tr>
<td>McDaniel, A.W.</td>
<td>406</td>
</tr>
<tr>
<td>McDonald, J.P.</td>
<td>170, 238</td>
</tr>
<tr>
<td>McDonnell Douglas Astronautics Company, Eastern Division</td>
<td>314, 315, 316</td>
</tr>
<tr>
<td>McNall, E.G.</td>
<td>146</td>
</tr>
<tr>
<td>Merek, E.L.</td>
<td>488</td>
</tr>
<tr>
<td>Michaelesen, G.S.</td>
<td>137, 147</td>
</tr>
<tr>
<td>Miles, J.R.</td>
<td>131</td>
</tr>
<tr>
<td>Miller, A.K.</td>
<td>69, 135</td>
</tr>
<tr>
<td>Miller, C.E.</td>
<td>105</td>
</tr>
<tr>
<td>Miller, C.G.</td>
<td>479</td>
</tr>
<tr>
<td>Miller, W.S.</td>
<td>480</td>
</tr>
<tr>
<td>Minnesota, University of</td>
<td></td>
</tr>
<tr>
<td>School of Public Health</td>
<td>212, 263, 481</td>
</tr>
<tr>
<td>Moscanin, J.</td>
<td>291</td>
</tr>
<tr>
<td>Modisette, J.L.</td>
<td>443</td>
</tr>
<tr>
<td>Moore, B.</td>
<td>362, 448, 482, 531</td>
</tr>
<tr>
<td>Morelli, F.A.</td>
<td>60, 392, 393, 471</td>
</tr>
<tr>
<td>Moritsugu, S.G.</td>
<td>381</td>
</tr>
<tr>
<td>Morris, M.E.</td>
<td>375, 542</td>
</tr>
<tr>
<td>Murphy, J.T.</td>
<td>19</td>
</tr>
<tr>
<td>Murray, B.C.</td>
<td>264</td>
</tr>
<tr>
<td>Murrell, W.G.</td>
<td>476</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nagler, R.G.</td>
<td>483</td>
</tr>
<tr>
<td>NASA</td>
<td>61, 213, 214, 265, 266, 267, 363, 484, 485</td>
</tr>
<tr>
<td>National Communicable Disease Center</td>
<td>268, 269, 364</td>
</tr>
<tr>
<td>Nelson, B.A.</td>
<td>365</td>
</tr>
<tr>
<td>Nelson, P.L.</td>
<td>321</td>
</tr>
<tr>
<td>Newsom, B.C.</td>
<td>158</td>
</tr>
<tr>
<td>Nicholas, R.C.</td>
<td>136</td>
</tr>
<tr>
<td>Nikander, J.</td>
<td>486</td>
</tr>
<tr>
<td>Nikiforva, E.N.</td>
<td>239</td>
</tr>
</tbody>
</table>
Smith, G. 279, 280, 373, 448, 532, 533
Sneath, P.H.A. 49
Soffen, G. 81
Sontowski, J.F. 396
Speck, M.L. 125, 126
Spiner, D.R. 38, 194, 386, 453
Stahler, M.R. 296
Sterilization Group 369
Stern, J.A. 187, 217, 274, 300, 328, 329
Stevens, J. 229
Steward, D.L. 275
Stierli, H. 64
Stuart, J. 81
Suess, R.H. 42
Sullivan, L. 230
Swift, J. 82
Sykes, G. 330

Tarver, P. 131
Taylor, D.M. 370, 371, 445, 470, 525, 526, 527, 528
Tenney, J.B., Jr. 160, 161
Thompson, T. 177
Thun, Y. 373, 482
Tobey, W.H. 231
Tolkacz, V.K. 299
Tortora, G. 243
Trauth, C.A., Jr. 227, 350
Trexler, P.C. 39
Trujillo, R.E. 529, 530
Truscello, V.C. 479
Tulis, J.J. 331, 332

Wachtler, J.P. 534
Walker, B., Jr. 254, 535
Wang, Y.L. 105
Wardle, M.D. 371, 536, 537
Warshowsky, B. 13
Watkins, H.D. 162, 234
Watson, D.C. 85
Weidner, D.K. 538, 539
West, K.L. 406
West, M.W. 497
Wheeler, R.E. 232
Whitbourne, J.E. 406
Whitehouse, C.E. 113
Whitfield, W.J. 210, 374, 375, 540, 541, 542
Wilkes, C.E. 12
Willard, M.Y. 42, 65, 66, 109, 335
Wilson, D.A. 336
Winge-Heden, K. 86
Winterton, G. 177
Wolfson, R.R. 247
Wolgin, A. 158
Woodall, J.L. 377
Wright, D.E. 281
Wynne, E.S. 50

Yalof, S. 87
Young, R.S. 88, 110

Zanks, J.F. 186
Zeits, R. 135
Zhukova, A.I. 282, 283

Ungar, A. 232, 333
United States Government 233
Urhin, R.A. 498
Ushakov, A.S. 354

Van Allen, R.T. 276
Varga, R.J. 83, 84
Vashkov, V.I. 239, 277, 334
Vesley, D. 211, 278, 279, 280, 372, 373, 331, 332, 533
Vishniac, W. 259
activation and of thermal death of bacterial spores/ kinetics of
aeolian erosion/The release of buried contamination by
aerosols/The sterilizing action of gaseous ethylene oxide.III. The ef
Air filtration of microbial particles/
air or touched by the human hand/Microbial contamination obtained on
airborne particulate contamination/Monitoring
(airflow)Bacterial penetration of the millipore microtube cartridge
alcohol sporulation method/Evaluation of
alcohols/The reversible inhibition of spore germination by
(Apollo)A search for viable organisms in a lunar sample/
(Apollo)An approach to computerized bacterial identification/
Apollo and contamination control. McDonnell Douglas' role/
Apollo and contamination control. Rocketdyne's role/
Apollo program/Handbook for contamination control on the
Apollo 6 spacecraft during final assembly and testing/Microbial cont
Apollo 10 and 11 spacecraft/Quantitative and qualitative microbiolog
(Apollo)User's manual for the planetary quarantine lunar information
aseptic maintenance by pressurization/A study of
(assembly)A microscopic method of particulate contamination/
(assembly)A research study to definitize a bio-isolation suit system
assembly and development laboratory routine cleaning and decontamina
(assembly)Apollo and contamination control. McDonnell Douglas' role
(assembly)Apollo and contamination control. Rocketdyne's role/
(assembly)Class 100 clean room program. Phase I/
assembly/Compatibility of sterilization and contamination control wi
(assembly)Contamination and sterilization/
(assembly)Contamination control/
assembly contamination model/An
(assembly)Development of mechanical sterile insertion engineering mo
(assembly)EASL/SADL test and operation. Phase II/
(assembly)Effect of current cleaning procedures on sterilization of
(assembly)Evaluation of microbiological filters for liquids and gas
assembly facility operations/Microbiological monitoring of spacecraf
assembly facility operations/Microbiological monitoring of spacecraf
(assembly)Heat-sterilizable, remotely activated battery development
assembly in the sterilization assembly development laboratory/Biolog
Assembly of CMTM for purposes of determining areas of contact during
(assembly)Recommendations for determination of spacecraft sterilizat
(assembly)Space hardware assay methodology/
(assembly)Spacecraft preparation and sterilization as state of the a
(assembly)Status review of technology developments for spacecraft st
assembly/sterilizer - A facility for the sterilization and assembly
assembly techniques/An experimental study of sterile
assembly techniques. Vol.1/Experimental study of sterile
assembly techniques/Experimental study of sterile
(assembly)Terminal sterilization process calculation for spacecraft/
(assembly)Testing and fabrication of plastic vacuum probe surface sa
(assembly)Valve bioload reduction and sterilization study/
Astronautics and aeronautics, 1968. Chronology of science, technolo
atmosphere/A feasibility study of an experiment for determining the
(air)An approach to contamination identification/
atmosphere entry/A study of thermal kill of viable organisms during
(air)The development of two closely controlled humidity system
atmospheres of different water contents/Heat resistance of Bacillus
(automation)Study of contamination sensors. Vol.I/
(Aw)A Martian surface simulation facility for bacterial studies/
(Aw)Bacteria under simulated Martian conditions/
(Aw)Biophysical analysis of the spore/
(Aw)Environmental microbiology as related to planetary quarantine/
(Aw)Estimation of microbial survival in heat sterilization/
(Aw)Microbiological aspects of ethylene oxide sterilization. III.
(Aw)Planetary quarantine program/
(Aw)The sterilising properties of ethylene oxide/
bacteria/Effect of diurnal freeze-thawing on survival and growth of
(bacteria)Heat injury of Bacillus subtilis spores at ultrahigh temper
(bacteria)I.Sterilization of suspensions of Serratia marcescens and s
Bacteria under simulated Martian conditions/
bacterial aerosols/The sterilizing action of gaseous ethylene oxide.
bacterial collector/Balloon-borne
bacterial contamination inside electronic components/A technique for
bacterial contamination inside electronic components. Test I/Invest
bacterial contamination inside electronic components. Test II/Inves
t bacterial contamination inside electronic components. Test III/Inve
bacterial contamination inside electronic components. Test IV/Inves
bacterial contamination inside solar panel/Investigation of
bacterial contamination of surfaces/A comparative evaluation of meth
bacterial contamination on nonporous surfaces/A direct surface agar
bacterial contamination on surfaces/Services provided in support of
Bacterial growth in agar subjected to freezing and thawing/
Bacterial growth in agar subjected to freezing and thawing. II./
bacterial identification/An approach to computerized
bacterial inactivation/Optimizing thermal and radiation effects for
bacterial isolants from rigorous environments/Systematic description
Bacterial penetration of Robbins BCO filter/
Bacterial penetration of the millipore microtube cartridge filter/
bacterial spore test piece for the control of ethylene oxide sterilization
bacterial spores/A probit method to interpret thermal inactivation of
bacterial spores/Effect of dry heat upon
bacterial spores/Effect of Gamma and X-rays upon dry sterilization
bacterial spores/Kinetics of heat activation and of thermal death of
bacterial spores/Studies on trace elements in the sporulation of bacilli
bacterial sterilization/Thermoradiation as a means of
bacterial studies/A Martian surface simulation facility for bacteriology of "clean rooms"/The balloon-borne bacterial collector/
(barrier)Design feasibility study of sterile insertion techniques/
barrier equipment and techniques. A state of the art report/Microbiological barrier equipment and techniques/Microbiological barrier techniques/Microbiological battery development program/Heat-sterilizable, remotely activated
Beta-propiolactone/Sterilization of instruments and materials with
Beta-propiolactone vapor as a disinfectant/
Beta-propiolactone vapor decontamination/
Beta-propiolactone vapor/Decontamination of enclosed spaces with
Beta-propiolactone vapor.I. Effect of Beta-propiolactone vapor on Ven
Beta-propiolactone vapor.II. Effect on the etiological agents of smallpox
Beta-propiolactone vapor/Method for disinfecting large enclosures with
(bioassay)Assembly of CMM for purposes of determining areas of contamination
(bioassay)Basic studies in environmental microbiology as related to the types of biological indicators used in monitoring sterility
(bioassay)Biological evaluation of the Biodetection Grinder/
(bioassay)Estimation of the parameters in exponential decontamination
(bioassay)Life in the clouds/
(bioassay technique)Ninth monthly status report on Contract NASW-173
(bioassay)The types of biological indicators used in monitoring sterility
(biobarrier)Basic studies in environmental microbiology as related to the assembly/sterilizer - A facility for the sterilization of spacecraft
(biobarrier)Biological contamination control/
(biobarrier)Development of a typical Mars landing capsule sterilization system
(biobarrier)Bio-barrier meteoroid holes/Flight capsule contamination probability
(biobarrier)The assembly/sterilizer - A facility for the sterilization of spacecraft
(bioburden)An assembly contamination model/
(bioburden)Biocountermeasures control/
(bioburden)Class 100 clean room program. Phase I/
(bioburden)Class 100 clean room program. Phase II/
(bioburden)Class 100 clean room program. Phase III/
(bioburden)Comparative studies of conceptual design and qualification
(bioburden)Decontamination of AIMP-D spacecraft/
(bioburden)Effect of current cleaning procedures on sterilization of spacecraft
(bioburden)Effect of microbial release probabilities on spacecraft sterilization
(bioburden)Estimation of the parameters in exponential decontamination
(bioburden)Life in the clouds/
(bioburden)Life in the clouds/
(bioburden)Mariner Mars 1971 planetary quarantine plan/
(bioburden)Mathematical models for contamination and pollution prediction
(bioburden)Microbiological monitoring of spacecraft assembly facility
Bioburden modeling/
(bioburden) New approaches to contaminant control in spacecraft/ 521
(bioburden) Planetary Quarantine Department/ 171
(bioburden) Planetary Quarantine Department/ 224
(bioburden) Planetary Quarantine program/ 225
(bioburden) Planetary quarantine, SPT (OSSA Program)/ 514
(bioburden) Recommendations for determination of spacecraft sterilization 131
(bioburden) Re-evaluation of planetary quarantine constraints/ 461
(bioburden) Spacecraft sterilization - A new engineering and sanitation approaches/ 274
(bioburden) Standard procedures for the microbiological examination of planetary landers/ 419
(bioburden) The National Aeronautics and Space Administration position/ 133
(bioburden) The objectives and technology of spacecraft sterilization 441
(bioburden) The objectives and technology of spacecraft sterilization 211
(bioburden) User's manual for the planetary quarantine lunar informatics 192
(bioburden) User's manual for the planetary quarantine lunar informatics 510
Biochemical activities of terrestrial microorganisms in simulated pl 115
Biocontamination control/ 203
Biodetection grinder/ 490
Biodetection Grinder/Biological evaluation of the 520
(bioinstrumentation) An approach to contamination identification/ 413
(bioinstrumentation) Antartic soil algal crusts: scanning electron 389
(bioinstrumentation) Compatibility and shielding analysis of science 479
(bioinstrumentation) Contamination control/ 276
(bioinstrumentation) Life detection systems/ 474
(bioinstrumentation) Mechanical sterile insertion system. Quality as 405
(bioinstrumentation) Quantitative and qualitative microbiological pro 500
(bio-isolator suit system/A research study to definitize a 253
(bio-isolation suit system (BISS)/A research study to definitize a 252
(bioload reduction and sterilization study/Valve 304
(biological aerosols (microorganisms)/Air pollution aspects of 347
(biological burden estimation of Mars probes and capsules and a method 347
(biological-chemical indicator for ethylene oxide sterilization/ 175
(biological contamination control/ 176
(biological contamination control: Policy and responsibility/Outbound 218
(biological contamination control: Policy and responsibility/Outbound 266
(biological contamination of Mars. II. Cold and aridity as constrai 265
(biological contamination of Mars/Probability of 76
(biological contamination of Mars. I. Survival of terrestrial micro 232
(biological contamination of the Moon/ 107
(biological contamination/The sterilization of space vehicles to prev 35
(biological monitoring of the capsule mechanical training model durin 21
(biometry) Biostatistics and space exploration: Microbiology and ster 370
Biophysical analysis of the spore/ 399
(BISS) The Model Assembly Sterilizer for Testing (MAST/ 476
(buried contamination) A study of dry heat sterilization of microorga 433
(buried contamination) Analysis of microbial release probabilities/ 222
(buried contamination) Basic studies in environmental microbiology as 420
(buried contamination) Biodetection grinder/ 212
(buried contamination) Buried contamination by aeolian erosion/The release of 490
(buried contamination) Buried contamination by aeolian erosion/The release of 377
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sterilizing techniques with ethylene oxide/</td>
<td>85</td>
</tr>
<tr>
<td>Surveyor spacecraft system. Vol. II/</td>
<td>84</td>
</tr>
<tr>
<td>Synergistic effects of ethylene oxide and other agents/</td>
<td>307</td>
</tr>
<tr>
<td>Technical manuals and planning study in planetary quarantine</td>
<td>313</td>
</tr>
<tr>
<td>Water on Venus?</td>
<td>475</td>
</tr>
<tr>
<td>Clean areas/Monitoring</td>
<td>210</td>
</tr>
<tr>
<td>Clean room and work station requirements, controlled environment/</td>
<td>233</td>
</tr>
<tr>
<td>Apollo and contamination control. McDonnell Douglas' role/</td>
<td>359</td>
</tr>
<tr>
<td>Apollo and contamination control. Rocketdyne's role/</td>
<td>341</td>
</tr>
<tr>
<td>Basic studies in environmental microbiology as related to</td>
<td>212</td>
</tr>
<tr>
<td>Bibliography. Codes, standards, procedures, specificati</td>
<td>472</td>
</tr>
<tr>
<td>Contamination control in the manufacturing sequence/</td>
<td>335</td>
</tr>
<tr>
<td>Clean room during an eleven week test period/The level of microbial</td>
<td>106</td>
</tr>
<tr>
<td>Industrial applications of laminar airflow/</td>
<td>434</td>
</tr>
<tr>
<td>JPL spacecraft sterilization technology program: A stat</td>
<td>123</td>
</tr>
<tr>
<td>Microbiologic filters - liquid and gas/</td>
<td>99</td>
</tr>
<tr>
<td>Planetary quarantine/</td>
<td>273</td>
</tr>
<tr>
<td>Planetary Quarantine Department/</td>
<td>224</td>
</tr>
<tr>
<td>Clean room program. Phase I/Class 100</td>
<td>314</td>
</tr>
<tr>
<td>Clean room program. Phase II/Class 100</td>
<td>315</td>
</tr>
<tr>
<td>Clean room program. Phase III/Class 100</td>
<td>316</td>
</tr>
<tr>
<td>Services provided in support of the planetary quarantine</td>
<td>439</td>
</tr>
<tr>
<td>Sterilization. A selected bibliography from the literature</td>
<td>190</td>
</tr>
<tr>
<td>Sterilization facility concepts/</td>
<td>24</td>
</tr>
<tr>
<td>Ultraclean technology/</td>
<td>449</td>
</tr>
<tr>
<td>Vacuum probe: new approach to the microbiological sample</td>
<td>375</td>
</tr>
<tr>
<td>Clean rooms. A classified list of selected references, 1955-1964/De</td>
<td>93</td>
</tr>
<tr>
<td>Cleaning in medical and life science research/ Present day usage of</td>
<td>351</td>
</tr>
<tr>
<td>Microbial contamination in</td>
<td>155</td>
</tr>
<tr>
<td>"clean rooms"/ The bacteriology of cleaning: A bibliography/Ultrasonic</td>
<td>147</td>
</tr>
<tr>
<td>Collector/Balloon-borne bacterial</td>
<td>75</td>
</tr>
<tr>
<td>A study of critical sterilization problems on a Mars atm</td>
<td>177</td>
</tr>
<tr>
<td>A study of the effectiveness of thermoradiation sterilization</td>
<td>507</td>
</tr>
<tr>
<td>A technique for the investigation of bacterial contamination</td>
<td>23</td>
</tr>
<tr>
<td>Automatic ethylene oxide decontamination system/</td>
<td>228</td>
</tr>
<tr>
<td>An experimental study of sterile assembly techniques/</td>
<td>100</td>
</tr>
<tr>
<td>An improved method of spacecraft sterilization/</td>
<td>513</td>
</tr>
<tr>
<td>Components are subjected during manufacture/Detection and quantitati</td>
<td>128</td>
</tr>
<tr>
<td>Biodetection grinder/</td>
<td>490</td>
</tr>
<tr>
<td>Biological burden estimation of Mars probes and capsules</td>
<td>175</td>
</tr>
<tr>
<td>Capsule sterilization canister separation joint/</td>
<td>292</td>
</tr>
<tr>
<td>Class 100 clean room program. Phase I/</td>
<td>314</td>
</tr>
<tr>
<td>Contamination control handbook for ground fluid systems/</td>
<td>337</td>
</tr>
<tr>
<td>Contamination control in the manufacturing sequence/</td>
<td>335</td>
</tr>
<tr>
<td>Decontamination, cleaning, coating and encapsulation of</td>
<td>103</td>
</tr>
<tr>
<td>Degradation due to contaminants throughout the test cycle</td>
<td>489</td>
</tr>
<tr>
<td>Design feasibility study of sterile insertion techniques</td>
<td>238</td>
</tr>
<tr>
<td>Design of clean rooms. A classified list of selected re</td>
<td>93</td>
</tr>
<tr>
<td>Design requirements for the sterilization containers of</td>
<td>160</td>
</tr>
</tbody>
</table>
Determination of terminal sterilization process parameters

Development of a typical Mars probe sterilization container

Development of concepts for improved spacecraft sterilization

Development of the sterilizable battery

Components/Ecology and thermal inactivation of microbes in and on spacecraft

Components/Ecology and thermal inactivation of microbes in and on spacecraft

Components/Ecology and thermal inactivation of microbes in and on spacecraft

Components/Ecology and thermal inactivation of microbes in and on spacecraft

Components/Ecology and thermal inactivation of microbes in and on spacecraft

Components/Ecology and thermal inactivation of microbes in and on spacecraft

Components/Ecology and thermal inactivation of microbes in and on spacecraft

Components/Ecology and thermal inactivation of microbes in and on spacecraft

Components/Ecology and thermal inactivation of microbes in and on spacecraft

Components/Ecology and thermal inactivation of microbes in and on spacecraft

Components/Ecology and thermal inactivation of microbes in and on spacecraft

Components/Ecology and thermal inactivation of microbes in and on spacecraft

Components/Ecology and thermal inactivation of microbes in and on spacecraft

Components/Ecology and thermal inactivation of microbes in and on spacecraft

Components/Ecology and thermal inactivation of microbes in and on spacecraft

Components/Ecology and thermal inactivation of microbes in and on spacecraft

Components/Ecology and thermal inactivation of microbes in and on spacecraft

Components/Ecology and thermal inactivation of microbes in and on spacecraft

Components/Ecology and thermal inactivation of microbes in and on spacecraft

Components/Ecology and thermal inactivation of microbes in and on spacecraft

Components/Ecology and thermal inactivation of microbes in and on spacecraft

Components/Ecology and thermal inactivation of microbes in and on spacecraft

Components/Ecology and thermal inactivation of microbes in and on spacecraft

Components/Ecology and thermal inactivation of microbes in and on spacecraft

Components/Ecology and thermal inactivation of microbes in and on spacecraft

Components/Ecology and thermal inactivation of microbes in and on spacecraft

Components/Ecology and thermal inactivation of microbes in and on spacecraft

Components/Ecology and thermal inactivation of microbes in and on spacecraft

Components/Ecology and thermal inactivation of microbes in and on spacecraft

Components/Ecology and thermal inactivation of microbes in and on spacecraft

Components/Ecology and thermal inactivation of microbes in and on spacecraft

Components/Ecology and thermal inactivation of microbes in and on spacecraft
components/Sterilization of space probe
(components)Sterilizing techniques with ethylene oxide/ 59
components/Studies for sterilization of space probe 85
components/Studies for sterilization of space probe 73
components/Studies for sterilization of space probe 101
components/Studies for sterilization of space probe 138
components/Survey of electronic 25
(components)Surveyor spacecraft system, Vol. I/ 83
components. Test I/Investigation of bacterial contamination inside 29
components. Test II/Investigation of bacterial contamination inside 30
components. Test III/Investigation of bacterial contamination inside 31
components. Test IV/Investigation of bacterial contamination inside 46
(components)The Model Assembly Sterilizer for Testing (MAST)/ 433
components/Thermal death studies on microbial spores and some consid 102
(components)Thermal sterilization of spacecraft structures/ 161
(components)Thermoradiation as a means of bacterial sterilization/ 508
(components)Valve bioload reduction and sterilization study/ 304
components with heat and ethylene oxide-Freon 12/Research study: Su 65
computerized bacterial identification/An approach to 403
(computerized identification)Planetary quarantine program/ 517
(computerized simulation)Dry heat sterilization 383
(computerized simulation)Planetary quarantine program/ 514
Concentration and temperature effects/Ethylene oxide gaseous steril 54
constraints. I. An introduction to the problems of planetary quara 259
(constraints)Analysis of microbial release probabilities/ 420
(constraints)Contamination and sterilization/ 473
(constraints)Development of a typical Mars landing capsule steriliza 209
(constraints)EASL/SADL test and operations. Phase II/ 320
(constraints)Estimation of planetary contamination probabilities by 422
(constraints)New concepts on sterilization. I. Alternatives to red 322
(constraints)Planetary contamination. II. Soviet and U.S. practice 264
(constraints)Planetary microbiological contamination/ 417
(constraints)Sterilization assembly and development laboratory routi 260
contaminant control in spacecraft/New approaches to 171
contaminants/Basic studies in environmental microbiology as related 278
contaminants from spacecraft optical systems/A system for removing 443
contaminants in the interiors of spacecraft components/Microbial 216
(contaminants)Microbiological barrier equipment and techniques. A s 173
(contaminants)Microbiological barrier techniques/ 151
contaminants throughout the test cycle/Degradation due to 489
contaminated Mars?/Panspermia revisited, or have we already 302
contaminating Mars/A nomenclature of symbols relevant to the probabi 182
(contamination)A discussion of the planetary quarantine constraints. 259
contamination/A microscopic method of particulate 501
contamination: A practical approach for developing sterilizing proc 69
contamination. A recurring problem/Biological and chemical surface 95
(contamination)Adaptive allocation of planetary quarantine violation 289
(contamination)Analytical method for calculating heat sterilization 15
(contamination)Analytical techniques in planetary quarantine/ 416
contamination and pollution prediction/Mathematical models for 365
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contamination and sterilization/</td>
<td>191</td>
</tr>
<tr>
<td>Contamination and sterilization/</td>
<td>473</td>
</tr>
<tr>
<td>(contamination)Assembly of CMTM for purposes of determining areas of</td>
<td>245</td>
</tr>
<tr>
<td>contamination associated with the Apollo 6 spacecraft during final a</td>
<td>499</td>
</tr>
<tr>
<td>contamination by aeolian erosion/The release of buried</td>
<td>377</td>
</tr>
<tr>
<td>contamination by space probes/The probability of planetary</td>
<td>187</td>
</tr>
<tr>
<td>contamination by terrestrial microorganisms/Analytical basis for the</td>
<td>421</td>
</tr>
<tr>
<td>(contamination)Capsule sterilization canister separation joint/</td>
<td>292</td>
</tr>
<tr>
<td>(contamination)Clean room and work station requirements, controlled</td>
<td>233</td>
</tr>
<tr>
<td>(contamination)Contributions of microbiological safety to space rese</td>
<td>150</td>
</tr>
<tr>
<td>Contamination control/</td>
<td>276</td>
</tr>
<tr>
<td>Contamination control -- a state-of-the-art review/</td>
<td>540</td>
</tr>
<tr>
<td>Contamination control: a very old, new field/</td>
<td>350</td>
</tr>
<tr>
<td>contamination control/Bibliography. Codes, standards, procedures, s</td>
<td>472</td>
</tr>
<tr>
<td>contamination control/Biological</td>
<td>218</td>
</tr>
<tr>
<td>contamination control for Titan IIIB program/Some new concepts in</td>
<td>262</td>
</tr>
<tr>
<td>Contamination control handbook for ground fluid systems/</td>
<td>377</td>
</tr>
<tr>
<td>contamination control in spacecraft sterilization/microbiological</td>
<td>188</td>
</tr>
<tr>
<td>Contamination control in the manufacturing sequence/</td>
<td>335</td>
</tr>
<tr>
<td>contamination control/Microbiological</td>
<td>152</td>
</tr>
<tr>
<td>contamination control on the Apollo program/Handbook for</td>
<td>213</td>
</tr>
<tr>
<td>contamination control/Outbound spacecraft: Basic policy relating to</td>
<td>267</td>
</tr>
<tr>
<td>(contamination)Planetary quarantine program/</td>
<td>329</td>
</tr>
<tr>
<td>contamination control: Policy and responsibility/Outbound lunar biol</td>
<td>265</td>
</tr>
<tr>
<td>contamination control: Policy and responsibility/Outbound planetary</td>
<td>266</td>
</tr>
<tr>
<td>contamination control. Rocketdyne's role/Apollo and</td>
<td>341</td>
</tr>
<tr>
<td>(contamination control)Sterile access studies in the Pilot Assembly</td>
<td>345</td>
</tr>
<tr>
<td>(contamination control)Twenty-first semiannual report to Congress/</td>
<td>485</td>
</tr>
<tr>
<td>contamination control with application to spacecraft assembly/Compat</td>
<td>94</td>
</tr>
<tr>
<td>(contamination)Develop and test of a sterile insertion repair techni</td>
<td>321</td>
</tr>
<tr>
<td>contamination/Die-off of microbial</td>
<td>279</td>
</tr>
<tr>
<td>(contamination)Dry-heat inactivation kinetics of naturally occurring</td>
<td>379</td>
</tr>
<tr>
<td>(contamination)Eleventh annual COSPAR session/</td>
<td>354</td>
</tr>
<tr>
<td>(contamination)Environmental microbiology as related to planetary qu</td>
<td>263</td>
</tr>
<tr>
<td>(contamination)Estimation of planetary contamination probabilities b</td>
<td>422</td>
</tr>
<tr>
<td>(contamination)Evaluation of alcohol sporulation method</td>
<td>356</td>
</tr>
<tr>
<td>(contamination)Exponential decontamination models for count data/</td>
<td>402</td>
</tr>
<tr>
<td>(contamination)Gaseous sterilization/</td>
<td>41</td>
</tr>
<tr>
<td>contamination identification/An approach to</td>
<td>413</td>
</tr>
<tr>
<td>contamination in a clean room during an eleven week test period/The</td>
<td>106</td>
</tr>
<tr>
<td>contamination in clean rooms/Microbial</td>
<td>155</td>
</tr>
<tr>
<td>contamination in space hardware/Methodology of measuring internal co</td>
<td>254</td>
</tr>
<tr>
<td>(contamination)Industrial applications of laminar airflow/</td>
<td>434</td>
</tr>
<tr>
<td>contamination inside balsa wood and explosive charges(squibs, pyrote</td>
<td>47</td>
</tr>
<tr>
<td>contamination inside cured solid propellant/Investigation of</td>
<td>48</td>
</tr>
<tr>
<td>contamination inside electronic components/A technique for the inves</td>
<td>24</td>
</tr>
<tr>
<td>contamination inside electronic components, Test I/Investigation of</td>
<td>29</td>
</tr>
<tr>
<td>contamination inside electronic components. Test II/Investigation of</td>
<td>30</td>
</tr>
<tr>
<td>contamination inside electronic components. Test III/Investigation o</td>
<td>31</td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>contamination inside electronic components. Test IV/Investigation o</td>
<td>46</td>
</tr>
<tr>
<td>contamination inside irradiated and heated electronic components/Inv</td>
<td>154</td>
</tr>
<tr>
<td>contamination inside solar panel/Investigation of bacterial</td>
<td>32</td>
</tr>
<tr>
<td>contamination/instrumentation and methodology in measurement of viab</td>
<td>374</td>
</tr>
<tr>
<td>(contamination)Investigation of the reliability of sterile insertion</td>
<td>230</td>
</tr>
<tr>
<td>contamination located between mated surfaces and on exterior surface</td>
<td>221</td>
</tr>
<tr>
<td>contamination log/Planetary microbiological</td>
<td>417</td>
</tr>
<tr>
<td>(contamination)Mariner Mars 1971 planetary quarantine plan/</td>
<td>450</td>
</tr>
<tr>
<td>(contamination)Microbiological studies conducted in the Experimental</td>
<td>145</td>
</tr>
<tr>
<td>(contamination)Microbiological studies on planetary quarantine/</td>
<td>308</td>
</tr>
<tr>
<td>(contamination)Microbiological survey of environmentally controlled</td>
<td>217</td>
</tr>
<tr>
<td>contamination model/An assembly</td>
<td>227</td>
</tr>
<tr>
<td>(contamination)Monitoring airborne particulate</td>
<td>360</td>
</tr>
<tr>
<td>(contamination)Monitoring clean areas/</td>
<td>210</td>
</tr>
<tr>
<td>contamination obtained on surfaces exposed to room air or touched by</td>
<td>77</td>
</tr>
<tr>
<td>contamination of a planet/Analysis and sensitivity studies related t</td>
<td>460</td>
</tr>
<tr>
<td>Contamination of Mars/</td>
<td>324</td>
</tr>
<tr>
<td>contamination of Mars. II. Cold and aridity as constraints on the</td>
<td>76</td>
</tr>
<tr>
<td>contamination of Mars/Probability of biological</td>
<td>232</td>
</tr>
<tr>
<td>contamination of Mars/Spacecraft sterilization and</td>
<td>157</td>
</tr>
<tr>
<td>contamination of Mars. I. Survival of terrestrial microorganisms i</td>
<td>107</td>
</tr>
<tr>
<td>contamination of planets and the Earth/Dangers of</td>
<td>49</td>
</tr>
<tr>
<td>contamination of surfaces/A comparative evaluation of methods for de</td>
<td>10</td>
</tr>
<tr>
<td>contamination of the Moon/Biological</td>
<td>35</td>
</tr>
<tr>
<td>contamination of the planets by unsterilized spaceflight hardware/P</td>
<td>247</td>
</tr>
<tr>
<td>contamination on nonporous surfaces/A direct surface agar plate lab</td>
<td>11</td>
</tr>
<tr>
<td>contamination on surfaces by chemical approaches/Detection of low le</td>
<td>271</td>
</tr>
<tr>
<td>contamination on surfaces by chemical approaches/Detection of low le</td>
<td>352</td>
</tr>
<tr>
<td>contamination on surfaces by chemical approaches/Detection of low le</td>
<td>444</td>
</tr>
<tr>
<td>contamination on surfaces. Evaluation of leakage of microbial contam</td>
<td>268</td>
</tr>
<tr>
<td>contamination on surfaces. Evaluation of leakage of microbial contam</td>
<td>269</td>
</tr>
<tr>
<td>contamination on surfaces/Services provided in support of the planet</td>
<td>117</td>
</tr>
<tr>
<td>contamination on surfaces/Services provided in support of the planet</td>
<td>118</td>
</tr>
<tr>
<td>contamination on surfaces/Services provided in support of the planet</td>
<td>119</td>
</tr>
<tr>
<td>contamination on surfaces/Services provided in support of the planet</td>
<td>120</td>
</tr>
<tr>
<td>contamination on surfaces/Services provided in support of the planet</td>
<td>180</td>
</tr>
<tr>
<td>(contamination)Organic constituent inventory for planetary flight mi</td>
<td>427</td>
</tr>
<tr>
<td>(contamination)Planetary Quarantine Department/</td>
<td>226</td>
</tr>
<tr>
<td>contamination probabilities by non-landing vehicles/Estimation of pl</td>
<td>422</td>
</tr>
<tr>
<td>contamination probability from viable organism penetration of bio-ba</td>
<td>231</td>
</tr>
<tr>
<td>contamination/Procedures necessary for the prevention of planetary</td>
<td>132</td>
</tr>
<tr>
<td>(contamination)Re-evaluation of planetary quarantine constraints/</td>
<td>419</td>
</tr>
<tr>
<td>(contamination)Research on microbiological sterilization problems/</td>
<td>116</td>
</tr>
<tr>
<td>(contamination)Scale-up of heat sterilization operations/</td>
<td>43</td>
</tr>
<tr>
<td>(contamination)Semiannual review of research and advanced developmen</td>
<td>358</td>
</tr>
<tr>
<td>contamination sensors. Vol.I/Study of</td>
<td>170</td>
</tr>
<tr>
<td>(contamination)Services provided in support of the planetary quarant</td>
<td>364</td>
</tr>
<tr>
<td>contamination/Some statistical problems in the standardization of a</td>
<td>137</td>
</tr>
<tr>
<td>contamination/Spacecraft sterilization and the prevention of planeta</td>
<td>134</td>
</tr>
</tbody>
</table>
Spacecraft sterilization, techniques and equipment/ Sterilization of space vehicles: the problem of mutual sterilizing space probes/ Study of the biological cleanliness of surfaces using sterilization/Sterilizing space probes/ The sterilization of space vehicles to prevent extraterrestrial contamination to which spacecraft components are subjected during manned mission/ Ultraclean technology/ Survey of electronic components/ Survey of electronic components/ COBISAR Contamination and sterilization/ COSPAR. French space program/ COSPAR Contamination and sterilization/ COSPAR. Report to COSPAR Microbial survival after simulated meteoroid impact/ COSPAR Planetary microbiological contamination log/ COSPAR Planetary quarantine plan Voyager project/ COSPAR Potentially harmful effects of space experiments/ COSPAR Probability of biological contamination of Mars/ COSPAR Procedures necessary for the prevention of planetary contamination/ COSPAR Relationship of planetary quarantine to biological search/ COSPAR Resolution 26.5. Draft/ The National Aeronautics and Space Administration/ COSPAR session/Eleventh annual/ COSPAR/Soviet spacecraft sterilization methods aired at/ COSPAR Spacecraft sterilization and contamination of Mars/ COSPAR Spacecraft-sterilization issue may effect pace of Mars and Venus/

Planetary quarantine program/
Procedures for the microbiological examination of space habitats/
Recent advances in microbiological environmental control/
Dry heat resistance studies/Reproducibility of results in
Semiannual review of research and advanced development. Vo
Spacecraft sterilization, techniques and equipment/
Spacecraft sterilization. Thermal considerations/
Sterilizable photomultiplier tubes/
Dry heat sterilization: A general review/Some biological and physical considerations/
Contamination control in the manufacturing sequence/
Electrostatic deposition device to deposit particles/
Ground simulation of a Mars-entry-capsule ascent/
Dry heat sterilization: Its development and application to component sterilization/
Dry heat sterilization modeling/
Dry heat sterilization of microorganisms at 105°C/
Sterilization of space probe components/
Sterilization procedures for planetary landers/
Studies for sterilization of space probe components/
Terminal sterilization process calculation for spacecraft/
The development of two closely controlled humidity systems/
Voyager effort focused on sterilization/
A study of dry heat sterilization of microorganisms at 105°C/
Contamination control in the manufacturing sequence/
Detection of low levels of microbial contamination on surfaces/
Dry heat destruction rates of B. subtilis var. niger in a clean environment/
Dry heat destruction rates of Bacillus subtilis spores on surfaces/
Dry heat destruction rates of Bacillus subtilis var. niger on a substrate/
Dry heat destruction rates of microorganisms on surfaces as a function of temperature/
Ecology and thermal inactivation of microbes in and on interstellar dust/
Effect of relative humidity on the penetrability and sporic survival of microbial spores/
Measurement of the destruction of bacterial spores by dry heat sterilization/
Methodology of measuring internal contamination in space habitats/
Microbial resistance to ethylene oxide sterilization in ultra-high vacuum and outer space/
Microbiological aspects of ethylene oxide sterilization. I.
Microbiological aspects of ethylene oxide sterilization. IV.
Planetary quarantine program/
Quarterly status report on NASA contract R-35/
Reproducibility of results in dry heat resistance studies/
Services provided in support of the planetary quarantine program/
Services provided in support of the planetary quarantine program.
Earth/Dangers of contamination of planets and the
(EASL)Microbiological survey of environmentally controlled areas/ 49
EASL/SADL test and operations. Phase II/ 217
eccofoam/Encapsulation, electronics 139
electromagnetic radiation in space/The biological effectiveness of s 311
electronic components/A technique for the investigation of bacterial 23
electronic components/Decontamination of ATMP-D spacecraft/ 258
electronic components/Encapsulation, electronics, eccofoam/ 139
electronic components/Experimental study of sterile assembly techni 135
electronic components/Experimental study of sterile assembly techni 143
electronic components/Survey of 25
electronic components, Test I/Investigation of bacterial contaminati 29
electronic components. Test II/Investigation of bacterial contaminat 30
electronic components. Test III/Investigation of bacterial contamina 31
electronic components. Test IV/Investigation of bacterial contaminat 46
electronic equipment/Maintainability design criteria for packaging o 446
Electronic parts sterilization program at the Jet Propulsion Laborat 202
electronics, eccofoam/Encapsulation 139
(electrostatic precipitation)Air filtration of microbial particles/ 70
Encapsulation, electronics, eccofoam/ 139
e encapsulation of MOSFETS circuitry/Handling, cleaning, decontaminati 140
e (environment)A feasibility study of an experiment for determining th 164
e (environment)A Martian surface simulation facility for bacterial stu 290
e (environment)A mathematical model for the thermoradiation inactivati 410
e (environment)A preliminary analysis of the radiation burden of a typ 412
e (environment)A research study to definitize a bio-isolator suit syst 253
e (environment)A study of critical sterilization problems on a Mars at 177
e (environment)Analytical basis for the estimation of planetary contam 421
e (environment)Apollo and contamination control. McDonnell Douglas' ro 359
e (environment)Bacteria under simulated Martian conditions/ 110
e (environment)Biological evaluation of the Biodetection Grinder/ 520
e (environment)Class 100 clean room program. Phase III/ 316
environment/Clean room and work station requirements, controlled 233
(environment)Contamination control: a very old, new field/ 350
(environment)Contributions of microbiological safety to space resear 150
environment criteria for the NASA Space Station Program/Natural 538
environment criteria guidelines for use in space vehicle development 539
(environment)Detection of low levels of microbial contamination on s 271
(environment)Die-off of microbial contamination/ 279
(environment)Dry heat destruction rates of Bacillus subtilis var. ni 482
(environment)Dry heat sterilization modeling/ 383
Environment	Effect of ultraviolet on the survival of bacteria	447
	Ethylene oxide sterilization rates and protective influence	301
	Handbook for contamination control on the Apollo program	213
	Heat resistance of Bacillus subtilis spores in atmosphere	136
	JPL develops double vacuum chamber for spacecraft tests	236
	Life in the clouds	376
	Microbiological analysis of snow and ice from the Antarctic	471
	Microbiological monitoring of spacecraft assembly facilities	342
	Microbiological studies on planetary quarantine	308
	Environment/Microorganism study: bacterial isolants from harsh environments	378
	Microorganisms under simulated Martian environment	57
	Monitoring clean areas	210
	New approaches to contaminant control in spacecraft	171
	Planetary Quarantine Department	302
	Planetary quarantine program	225
	Present day usage of clean rooms in medical and life sciences	517
	Reproducibility of results in dry heat resistance studies	351
	Services provided in support of the planetary quarantine	481
	Soil microbial and ecological investigations in the Antarctic	438
	Soil studies - Desert microflora. XI. Desert soil algae	392
	Some new concepts in contamination control for Titan II	178
	Some problems posed by the planet Venus	262
	Space and spacecraft	486
	Space hardware assay methodology	380
	Spacecraft polymeric material interactions during decontamination	280
	Sterilization group report No.1	511
	Study of attributes of mated surfaces that affect the habitability of microorganisms	141
	The effect of ultraviolet radiation upon microorganisms	251
	The survival of microorganisms in space. Further rocket tests	533
	The survival of terrestrial microorganisms in space at high temperatures	440
	Viability of microorganisms in the desert soils of Turkmenistan	255
	Water on Venus?	303
	Environmental control/Recent advances in environmental control	283
	Environmental history/Ground simulation of a Mars-entry-capsule aero-bridge	475
	Environmental microbiology as related to planetary quarantine	319
	Environmental microbiology as related to planetary quarantine	535
	Environmental microbiology as related to planetary quarantine	483
	Environmental microbiology as related to planetary quarantine	263
	Environmental microbiology as related to planetary quarantine	367
	Environmental microbiology as related to planetary quarantine	495
	Environmental microbiology as related to planetary quarantine. I. Aspects of environmental microbiology as related to planetary quarantine	278
	Environmentally controlled areas/Microbiological survey of environments/Ability of microorganisms to establish ecological niche	212
	Environments associated with the sterilization of planetary capsules	217
	Environments/Biochemical activities of terrestrial microorganisms in environments	299
	Biological contamination of Mars. II. Cold and aridity environments	197
	Biological contamination of Mars. I. Survival of terrestrial microorganisms	115
	-73-	
enviirsmeno:~/jefficiency
of sterilants in terrestrial and extraterres
environments/Environmental specification Voyager capsule flight equi
environments/Ethylene oxide sterilization of spores in hygroscopic
environments/Life in estraterrestrial
(environments)On the role of DNA in wet heat sterilization of microo
environments on the viability of microorganisms/Effects of simulated
environments/Studies with microorganisms and plants under simulated
environments/Systematic description of bacterial isolants from rigor
(equipment)Development of an ultrasonic/Vacuum sampling device/
(equipment)Electrostatic deposition device to deposit monolayers of
(equipment)The vacuum probe sampler/
(ethylene oxide)An investigation of a sono-chemical approach in ster
ethylene oxide and methyl bromide against microorganisms on various
ethylene oxide and methyl bromide mixture/Efficiency of sterilizatio
ethylene oxide and other agents/Synergistic effects of
(ethylene oxide)Assembly of CMTM for purposes of determining areas o
ethylene oxide/Bibliography on applications of
ethylene oxide decontamination environments/Environmental specificat
(ethylene oxide)Decontamination procedures/
ethylene oxide decontamination system/An automatic
(ethylene oxide)Evaluation of sterilization by gaseous oxide/
ethylene oxide-Freon 12 decontamination procedure B. The quantitativ
Ethylene oxide-Freon 12 decontamination procedure: Reactions in the
(ethylene oxide-Freon 12)Experimental study of sterile assembly tech
(ethylene oxide-Freon 12)Experimental study of sterile assembly tech
ethylene oxide-Freon 12/Research study: Surveyor sterilization. Part
ethylene oxide-Freon 12 sterilant gas mixture/Literature review of t
(ethylene oxide-Freon 12)Surveyor sterilization. Part IV. Studies of
ethylene oxide gas mixtures/Sterilization with
ethylene oxide gas on Scotch tape/Penetrability and effect of
ethylene oxide gas upon spore contamination located between mated su
(ethylene oxide)Gaseous disinfection/
(ethylene oxide)Gaseous sterilization/
Ethylene oxide gaseous sterilization. I. Concentration and temperatu
Ethylene oxide gaseous sterilization. II. Influence of method of hum
(ethylene oxide)Investigation of microbial contamination inside cure
ethylene oxide/Microbial resistance to
(ethylene oxide)Penetration by gases to sterilize interior surfaces
(ethylene oxide)Planetary quarantine/
ethylene oxide process specifications and procedures/Development of
ethylene oxide process specifications and procedures/Development of
ethylene oxide/Properties and essential information for safe handlin
(ethylene oxide)Quarterly report on NASA contract R-35/
(ethylene oxide)Recent advances in microbiological environmental con
ethylene oxide; reduction of bacterial contamination on surfaces/Ser
ethylene oxide; reduction of microbial contamination on surfaces. Ev
ethylene oxide; reduction of microbial contamination on surfaces.

Ev ethylene oxide; reduction of microbial contamination on surfaces.

Ev ethylene oxide; reduction of microbial contamination on surfaces/Services provided

Ethylene oxide resistance of nondesiccated and desiccated spores of ethylene oxide. I. Review/The sterilizing action of gaseous

(ethylene oxide)Semiannual review of research and advanced development (ethylene oxide)Services provided in support of the planetary quarantine

(ethylene oxide)Severe Voyager sterilization criteria set/

ethylene oxide/Simple improvised chambers for gas sterilization with (ethylene oxide)Spacecraft preparation and sterilization as state of the art

ethylene oxide sterilization gases/Compatibility of Centaur/Surveyor mat

ethylene oxide sterilization/A bacterial spore test piece for the evaluation of ethylene oxide sterilization/Biological-chemical indicator for evaluation of ethylene oxide sterilization.

I. Experimental apparatus and methods/

(ethylene oxide)Sterilization of spacecraft/

Ethylene oxide sterilization of spores in hygroscopic environments/

Ethylene oxide sterilization rates and protective influences/

Ethylene oxide sterilization studies/

Ethylene oxide sterilization without special equipment/

ethylene oxide/Sterilizing techniques with (ethylene oxide)Synergistic effects in sonochemical sterilization/

(ethylene oxide)Test environments associated with the sterilization process

ethylene oxide/The age of Bacillus subtilis spores and their resistance to ethylene oxide. III. The effect of ethylene oxide and related compounds on bacterial spores in hygroscopic environments/

ethylene oxide. IV. The effect of moisture/The sterilizing action of ethylene oxide/The Model Assembly Sterilizer for Testing (MAST)/

(ethylene oxide)The space vehicle sterilization problem/

ethylene oxide/The sporicidal activity of ethylene oxide sterilization without special equipment/

(ethylene oxide)The sterilizing properties of ethylene oxide/Voyager effort focused on sterilization/

exobiological space probes/Dry-heat sterilization; its development and use

(exobiology)A general review of chemical sterilization in space reentry vehicles

(exobiology)Bacterial growth in agar subjected to freezing and thawing

(exobiology)Contamination control/

(exobiology)Dangers of contamination of planets and the Earth/

(exobiology)Effects of sterilization in spacecraft design/

(exobiology)Life detection systems/

(exobiology)Life in extraterrestrial environments/

(exobiology)Life in the clouds/

(exobiology)Mathematical models for contamination and pollution prediction

(exobiology)Space probe sterilization/

(exobiology)Sterilizing unmanned spacecraft/
Viruses respond to environmental exposure/

Experimental Assembly and Sterilization Lab (EASL)/Microbiological ass

Experimental Assembly and Sterilization Laboratory (EASL)/Microbiologist

Exterior surfaces of various materials/Effectiveness of dry heat and extraterrestrial biological contamination/The sterilization of space extraterrestrial environments/Efficiency of sterilants in terrestrial extraterrestrial environments/Life in extraterrestrial life/The biological significance of search for

Filter/Bacterial penetration of Robbins BCO

Filter/Bacterial penetration of the millipore microtube cartridge

(Filter) Clean room and work station requirements, controlled environ

(Filter) Methods for spacecraft sterilization/

(Filter) Microbiological barrier equipment and techniques. A state of

(Filter) Monitoring airborne particulate contamination/

(Filter) Recent advances in microbiological environmental control/

(Filter) Services provided in support of the planetary quarantine req

(Filter) The biological effectiveness of solar electromagnetic radiat

(Filter) The space vehicle sterilization problem/

(Filter) Ultraclean technology/

Filters for liquids and gases/Evaluation of microbiological filters - liquid and gas/Microbiologic filters to sterilize liquids and gases/Evaluation of the efficiency filtration of microbial particles/Air formaldehyde by various surfaces during gaseous decontamination/Adso formaldehyde/Disinfection of heat-sensitive material by low-temperat formaldehyde/Effect of relative humidity on the penetrability and sp formaldehyde/Gaseous disinfection/

(formaldehyde) Surveyor sterilization. Part IV. Studies of sterilizat formaldehyde-water solutions/Comparison of sterilizing properties of (freeze-thaw cycling) Ability of microorganisms to establish ecologic freeze-thawing on survival and growth of selected bacteria/Effect of freezing and thawing/Bacterial growth in agar subjected to Freon-12 ethylene oxide sterilant gases/Compatibility of Centaur/Sur Gamma and X-rays upon dry bacterial spores/Effect of (Gamma radiation) A study of the effectiveness of thermoradiation ste (Gamma radiation) Thermoradiation as a means of bacterial sterilizati gaseous oxide/Evaluation of sterilization
Gemini satellite experiments/The survival of terrestrial microorganisms generators/Parametric study of radioisotope thermoelectric and thermal generators/Gnotobiotics in relation to space biology/ (gnotobiotics) Sterilization literature abstracts/ (gnotobiotics) Ultraclean technology/ growth of selected bacteria/ Effect of diurnal freeze-thawing on survival growth of surviving cells/ Effect of heat treatment on the

(hardware) Assembly of CMTM for purposes of determining areas of cont... (hardware) Class 100 clean room program. Phase II/ (hardware) Development of a typical Mars landing capsule sterilization hardware/ Development of mechanical sterile insertion engineering mod... (hardware) JPL spacecraft sterilization technology program: A status (hardware) Microbiological activities conducted during the Phase I... (hardware) Monitoring clean areas/... hardware sterility/ Experimental Assembly and Sterilization Lab (EASL) (hardware) The assembly/sterilizer - A facility for the sterilization (hardware) The objectives and technology of spacecraft sterilization/ (heat) A mathematical model for the thermoradiation inactivation of... heat activation and of thermal death of bacterial spores/ Kinetics of... (heat) An improved method of spacecraft sterilization/... heat and ethylene oxide-Freon 12/ Research study: Surveyor steriliz... heat and radiation/ A study of the factors influencing sterilization... heat chamber for sterilization of large interplanetary structures/ Ex... heat destruction of microorganisms located in these areas/ Study of a... (heat) Development of a typical Mars landing capsule sterilization co... (heat) Development of the sterilizable battery/... (heat) Effect of sterilization in spacecraft design/ (heat) Electronic parts sterilization program at the Jet Propulsion L... (heat) Hot air sterilization at 2000/... Heat injury of Bacillus subtilis spores at ultrahigh temperatures/... (heat) Investigation of microbial contamination inside irradiated and... (heat) Investigations on sterilizable polymeric battery separator/... (heat) Microbiological aspects of ethylene oxide sterilization. I. Ex... (heat) Optimization of oven-heating profiles in spacecraft steriliz... (heat) Planning, evaluation and analytical studies in planetary quara... (heat) Resistance/ Biophysical analysis of the spore/... Heat resistance of Bacillus subtilis spores in atmospheres of differ... (heat) Resistance/ The bacteriology of "clean rooms"/... heat-sensitive material by low-temperature steam and formaldehyde/... (heat) Spacecraft sterilization procedures in the USSR/... heat specifications/Review of
<table>
<thead>
<tr>
<th>Heat Specifications/Review of</th>
<th>536</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Sterilizable Accelerometer Development Program/</td>
<td>537</td>
</tr>
<tr>
<td>Heat Sterilizable and Impact Resistant Ni-Cd Battery Development. Vo</td>
<td>464</td>
</tr>
<tr>
<td>Heat-Sterilizable, Remotely Activated Battery Development Program/</td>
<td>248</td>
</tr>
<tr>
<td>Heat Sterilization and Ethylene Oxide Decontamination Environments/E</td>
<td>387</td>
</tr>
<tr>
<td>Heat Sterilization/Estimation of Microbial Survival in</td>
<td>229</td>
</tr>
<tr>
<td>(Heat) Sterilization Literature Abstracts/</td>
<td>326</td>
</tr>
<tr>
<td>Heat Sterilization/New Concepts on Sterilization. I. Alternatives to</td>
<td>201</td>
</tr>
<tr>
<td>Heat Sterilization Operations/Scale-Up of</td>
<td>322</td>
</tr>
<tr>
<td>Heat Sterilization Time/Analytical Method for Calculating</td>
<td>43</td>
</tr>
<tr>
<td>(Heat) The Place of Radiation Sterilization in Combined Techniques/</td>
<td>15</td>
</tr>
<tr>
<td>Heat Treatment of Bacteria. I. Sterilization of Suspensions of Sera</td>
<td>306</td>
</tr>
<tr>
<td>Heat Treatment on the Growth of Surviving Cells/Effect of</td>
<td>9</td>
</tr>
<tr>
<td>Heat Upon Dry Bacterial Spores/Effect of Dry</td>
<td>17</td>
</tr>
<tr>
<td>Heating/Development of Quality Assurance Requirements for Planetary</td>
<td>27</td>
</tr>
<tr>
<td>(Histogram) A Study Program on the Development of Mathematical Model(</td>
<td>296</td>
</tr>
<tr>
<td>Humidification/Ethylene Oxide Gaseous Sterilization. II. Influence of</td>
<td>432</td>
</tr>
<tr>
<td>(Humidity) A Research Study to Definitize a Bio-Isolator Suit System/</td>
<td>55</td>
</tr>
<tr>
<td>Humidity and Water Activity on the Sporicidal Activity of Ethylene Oxide</td>
<td>253</td>
</tr>
<tr>
<td>Humidity Conditions/Survival of Microbial Spores Under Several Temperatures</td>
<td>468</td>
</tr>
<tr>
<td>(Humidity) Ethylene Oxide-Freon 12 Decontamination Procedure: Reaction</td>
<td>533</td>
</tr>
<tr>
<td>Humidity, Location, Surface Finish and Separator Thickness on the</td>
<td>257</td>
</tr>
<tr>
<td>Humidity, Location, Surface Finish and Separator Thickness on the</td>
<td>343</td>
</tr>
<tr>
<td>(Humidity) Measurement of the Destruction of Bacterial Spores by Dry</td>
<td>408</td>
</tr>
<tr>
<td>Humidity System/The Development of Two Closely Controlled</td>
<td>394</td>
</tr>
<tr>
<td>Hydrogen Peroxide Mixed with a Detergent to Reduce Microbial Contamination</td>
<td>442</td>
</tr>
<tr>
<td>Hygroscopic Environments/Ethylene Oxide Sterilization of Spores in</td>
<td>334</td>
</tr>
<tr>
<td>Antarctic Soil Algal Crusts; Scanning Electron and Other</td>
<td>18</td>
</tr>
<tr>
<td>Inactivation Characteristics of Bacillus Subtilis at Ultrahigh Temperatures</td>
<td>389</td>
</tr>
<tr>
<td>Inactivation Kinetics of Naturally Occurring Spore Populations/</td>
<td>126</td>
</tr>
<tr>
<td>Inactivation/Mechanisms of Spore</td>
<td>379</td>
</tr>
<tr>
<td>Inactivation of Bacterial Spores/A Probit Method to Interpret Thermal</td>
<td>529</td>
</tr>
<tr>
<td>Inactivation of Dry Bacillus Subtilis var. niger Spores/A Mathematical</td>
<td>12</td>
</tr>
<tr>
<td>Inactivation of Microbes in and on Interplanetary Space Vehicle Comp</td>
<td>410</td>
</tr>
<tr>
<td>Inactivation of Microbes in and on Interplanetary Space Vehicle Comp</td>
<td>111</td>
</tr>
<tr>
<td>Inactivation of Microbes in and on Interplanetary Space Vehicle Comp</td>
<td>112</td>
</tr>
<tr>
<td>Inactivation of Microbes in and on Interplanetary Space Vehicle Comp</td>
<td>165</td>
</tr>
<tr>
<td>Inactivation of Microbes in and on Interplanetary Space Vehicle Comp</td>
<td>166</td>
</tr>
<tr>
<td>Inactivation of Microbes in and on Interplanetary Space Vehicle Comp</td>
<td>167</td>
</tr>
<tr>
<td>Inactivation of Microbes in and on Interplanetary Space Vehicle Comp</td>
<td>168</td>
</tr>
<tr>
<td>Inactivation of Microbes in and on Interplanetary Space Vehicle Comp</td>
<td>235</td>
</tr>
<tr>
<td>Inactivation of Microbes in and on Interplanetary Space Vehicle Comp</td>
<td>284</td>
</tr>
<tr>
<td>Inactivation of Microbes in and on Interplanetary Space Vehicle Comp</td>
<td>502</td>
</tr>
<tr>
<td>Inactivation of Microbes in and on Interplanetary Space Vehicle Comp</td>
<td>503</td>
</tr>
<tr>
<td>Inactivation of Microbes in and on Interplanetary Space Vehicle Comp</td>
<td>504</td>
</tr>
<tr>
<td>Inactivation of Microbes in and on Interplanetary Space Vehicle Comp</td>
<td>505</td>
</tr>
</tbody>
</table>

-78-
inactivation/Optimizing thermal and radiation effects for bacterial
inhibition of spore germination by alcohols/The reversible
Instrumentation and methodology in measurement of viable and nonviab
interior surfaces of confined spaces/Penetration by gases to sterili
planetary space vehicle components/Ecology and thermal inactiva
interplanetary space vehicle components/Ecology and thermal inactiva

Laminar air flow in planetary quarantine/
laminar airflow/Industrial applications of
(laminar airflow)Present day usage of clean rooms in medical and lif
(laminar airflow)The bacteriology of "clean rooms"/
laminar flow biological safety cabinet/Services provided in support
(lander)Analysis and sensitivity studies related to post-launch reco
lander/Estimation of microbial release probabilities from a Martian
(lander)Life detection systems/
lander mission/A preliminary analysis of the radiation burden of a t
(lander)Thermal sterilization of spacecraft structures/
lander. Vol. IV. Sterilization, Appendix C (with 8 nomogram enclosur
lander. Vol. IV. Sterilization/Comparative studies of conceptual des
landers/Design requirements for the sterilization containers of plan
landers/Sterilization procedures for planetary
(landing capsule)Planetary Quarantine Department/
landing capsule sterilization container/Development of a typical Mar
landing capsule sterilization container/Development of a typical Mar
landing capsule sterilization container/Development of a typical Mar
Life detection systems/
lunar and planetary missions/Examination of engineering requirements
lunar and planetary space vehicles/Sterilization of
lunar space vehicles. An engineering examination/Sterilization of un

manufacture/Detection and quantitation of microbial contamination to
Mariner Mars 1969 planetary quarantine plan/
(Mariner-Mars '69)Services provided in support of the planetary quar
(Mariner Mars '71)Implications of change in probability of microbial
Martian atmospheric models/Effective sky temperatures for several Martian conditions/Bacteria under simulated Martian conditions/Multiplication of certain soil microorganisms under Martian dust clouds/Effect of ultraviolet on the survival of bacteria Martian environment/Microorganisms under simulated Martian environments/Biological contamination of Mars. II. Cold and Martian environments/Studies with microorganisms and plants under simulated (Martian lander) Biocontamination control/ Martian lander/Estimation of microbial release probabilities from a mated surface simulation facility for bacterial studies/A mated surface areas and encapsulated in solids of spacecraft hardware (mated surfaces) Environmental microbiology as related to planetary quality mated surfaces/Investigation of methods for the sterilization of pot mated surfaces/Investigation of methods for the sterilization of pot (mated surfaces) Planetary quarantine, SPT (OSA program)/ (mated surfaces) Semiannual review of research and advanced development mated surfaces that affect the heat destruction of microorganisms located mated surfaces/ The effect of humidity, location, surface finish and (mated surfaces)/ The effect of humidity, location, surface finish and (mathematical model) Planetary Quarantine Department/ (mathematical model) Planetary quarantine. Techniques for the prevent. mathematical model(s) for microbial burden prediction. Vol. VIII. R mathematical model(s) for microbial burden prediction. Vol. X. Final (mathematical models) Some new concepts in contamination control for (membrane) A study of aseptic maintenance by pressurization/ (membrane filter) Services provided in support of the planetary quarantine meteoroid impact/Microbial survival after simulated methyl bromide against microorganisms on various types of surfaces/ (methyl bromide) Gaseous sterilization/ methyl bromide mixture/Efficiency of sterilization by making use of (methyl bromide) Quarterly report on NASA contract R-35/ (methyl bromide) Quarterly status report on NASA contract R-35/ (methyl bromide) Soviet spacecraft sterilization methods aired at COS (methyl bromide) Sterilization of interplanetary spacecraft/ (methyl bromide) Sterilization of spacecraft/ methyl bromide vapor/Sterilization with microbes in and on interplanetary space vehicle components/Ecology a microbes in and on interplanetary space vehicle components/Ecology a microbes in and on interplanetary space vehicle components/Ecology a microbes in and on interplanetary space vehicle components/Ecology a microbes in and on interplanetary space vehicle components/Ecology a microbes in and on interplanetary space vehicle components/Ecology a microbes in and on interplanetary space vehicle components/Ecology a microbes in and on interplanetary space vehicle components/Ecology a microbes in and on interplanetary space vehicle components/Ecology a microbes in and on interplanetary space vehicle components/Ecology a microbes in and on interplanetary space vehicle components/Ecology a
microbes in and on interplanetary space vehicle components/Ecology a 505
microbial burden prediction. Vol. VIII. Revisions to Vol. VI User's 431
microbial burden prediction. Vol. X. Final report addendum on Phase 432
Microbial contaminants in the interiors of spacecraft components/ 216
Microbial contamination associated with the Apollo 6 spacecraft duri 499
(microbial contamination)Control and sampling in sterile rooms/ 330
microbial contamination/Die-off of 279
microbial contamination in a clean room during an eleven week test p 106
Microbial contamination in clean rooms/ 155
(microbial contamination)Industrial applications of laminar airflow/ 434
microbial contamination inside balsa wood and explosive charges (squ 47
microbial contamination inside cured solid propellant/Investigation 48
microbial contamination inside irradiated and heated electronic comp 154
Microbial contamination obtained on surfaces exposed to room air or 77
microbial contamination on surfaces by chemical approaches/Detection 271
microbial contamination on surfaces by chemical approaches/Detection 352
microbial contamination on surfaces by chemical approaches/Detection 444
microbial contamination on surfaces. Evaluation of leakage of microb 181
microbial contamination on surfaces. Evaluation of leakage of microb 268
microbial contamination on surfaces. Evaluation of leakage of microb 269
microbial contamination on surfaces/Services provided in support of 180
microbial contamination/The possibility of using hydrogen peroxide m 334
microbial contamination to which spacecraft components are subjected 128
microbial growth for Mars/Implications of change in probability of 423
microbial particles/Air filtration of 70
microbial release probabilities/Analysis of 420
microbial release probabilities from a Martian lander/Estimation of 518
Microbial resistance to ethylene oxide/ 297
Microbial resistance to ethylene oxide/Microbiological aspects of et 467
microbial spore destruction/Mathematical basis for a diffusion model 425
microbial spores and some considerations for the sterilization of sp 102
microbial spores under several temperature and humidity conditions/S 373
microbial spores under several temperature and humidity conditions/S 533
Microbial sterilization in ultra-high vacuum and outer space: a kine 384
Microbial survival after simulated meteoroid impact/ 270
(microbial survival)Analytical techniques in planetary quarantine/ 416
microbial survival in heat sterilization/Estimation of 326
Microbiologic filters - liquid and gas/ 99
Microbiological activities conducted during the Phase I operation in 144
microbiological assay and certification of spacecraft hardware steri 242
Microbiological barrier equipment and techniques/ 219
Microbiological barrier equipment and techniques. A state of the art 173
Microbiological barrier techniques/ 151
microbiological challenge in space/ 20
Microbiological contamination control. A state of the art report/ 152
Microbiological contamination control in spacecraft sterilization/ 188
microbiological contamination log/Planetary 417
microbiological contamination/Some statistical problems in the stand 137
microbiological environmental control/Recent advances in 319
microbiological examination of space hardware: NASA's current edition microorganisms/Desert microorganisms/Desert microflora. XI. Desert soil algae survival at extremely low temperature (microflora)Microbiological analysis of snow and ice from the Antarctic microorganism/Effects of continuous and interrupted radiation on microorganism growth/Investigation of spacecraft materials that support Microorganism study: bacterial isolants from harsh environment/(microorganisms)An analysis of vacuum effects in the sterilization of microorganisms/Analytical basis for the estimation of planetary contamination levels Microorganisms and plants under simulated Martian environments/Studies on microorganisms as a principal extremal factor of space environment/Testing of Astronautics information: Effects of sterilizing agents microorganisms at 105°C/A study of dry heat sterilization of microorganisms/Balloon-borne bacterial collector/(microorganisms)Class 100 clean room program. Phase II/(microorganisms)Contamination control: a very old, new field/(microorganisms)Decontamination of AIMP-D spacecraft/(microorganisms)Develop and test of a sterile insertion repair technology (microorganisms)Effect of ultra-high vacuum on Bacillus subtilis var microorganisms/Effects of simulated space environments on the viability of microorganisms/Electrostatic deposition device to deposit monolayer (microorganisms)Ethylene oxide sterilization rates and protective in (microorganisms)Evaluation of a quantal response model with estimate microorganisms from solids after simulated hard landings/Release of microorganisms in desert soil exposed to five years of continuous ve
microorganisms in nitrogen gas/Enumeration of viable microorganisms in simulated Martian environments/Biological contamin microorganisms in simulated planetary environments/Biochemical activ microorganisms in simulated space/Study of viability of Microorganisms in solid materials. Phases I, II, III, IV/ microorganisms in space at orbital altitudes during Gemini satellite microorganisms in space. Further rocket and balloon borne exposure ex microorganisms in the desert soils of Turkmenia/Viability of microorganisms in ultra-high vacuum/The viability of microorganisms Investigations on the sterilization efficacy of gas microorganisms located in these areas/Study of attributes of mated s (microorganisms)Ninth monthly status report on Contract NASW-1734/ microorganisms on open surfaces, in mated surface areas and encapsul microorganisms on surfaces as a function of relative humidity; devel microorganisms on surfaces as a function of relative humidity/Dry he microorganisms on surfaces: studies to evaluate possible sources of microorganisms/On the role of DNA in wet heat sterilization of microorganisms on various types of surfaces/Bactericidal activity of microorganisms/Physical methods of sterilization of (microorganisms)Planetary quarantine/ (microorganisms)Planetary quarantine/ (microorganisms)Planning, evaluation and analytical studies in plane (microorganisms)Quarterly report on NASA contract R-35/ (microorganisms)Quarterly status report on NASA contract R-35/ (microorganisms)Services provided in support of the planetary requi (microorganisms)The biological effectiveness of solar electromagneti (microorganisms)The development of two closely controlled hum (microorganisms)The place of radiation sterilization in combined tec microorganisms to dry heat: Design of apparatus, operational problem microorganisms to establish ecological niches in different soils and microorganisms to radiation/Adaptation of microorganisms to ultraviolet rays/Resistance of certain strains of microorganisms under simulated Martian conditions/Multiplication Microorganisms under simulated Martian environ/ (model)A stochastic approach to bioburden estimation and prediction. (model)A study of thermal kill of viable organisms during Mars atmos (model)Adaptive allocation of planetary quarantine violation probabi (model)An analysis of vacuum effects in the sterilization of microor model/An assembly contamination (model)Analytical basis for the estimation of planetary contaminatio (model)Approximations to the Bayes estimate for a quanta1 assay with Model Assembly Sterilizer for Testing (MAST)/ model/Bayesian analysis for an exponential surveillance (model)Determination of terminal sterilization process parameters/ (model)Development of a typical Mars landing capsule sterilization c (model)Development of a typical Mars landing capsule sterilization c model during assembly in the sterilization assembly development labo (model)Estimation of planetary contamination probabilities by non-la
model for spacecraft sterilization/Development and application of a
model for spacecraft sterilization requirements/A rational
model for the thermoradiation inactivation of dry Bacillus subtilis
model hardware/Development of mechanical sterile insertions engineeri
(model)Mariner Mars 1969 planetary quarantine plan/
(model)Microbiological studies on planetary quarantine/
model of microbial spore destruction/Mathematical basis for a diffus
(model)Planetary quarantine/
(model)Planetary Quarantine Department/
(model)Planetary Quarantine Department/
(model)Planetary quarantine program/
(model)Planning, evaluation, and analytical studies in planetary qua
(model)Planning, evaluation and analytical studies in planetary quar
(model)Probability of biological contamination of Mars/
(model)Probability of biological contamination of Mars/
model/Stochastic math
model/Stochastic math
(model)Terminal sterilization process calculation for spacecraft/
model with estimated concentrations/Evaluation of a quantal response
modeling/Bioburden
modeling/Dry heat sterilization
modeling/Dry heat sterilization
modeling of thermoradiation synergism/Mathematical
models/Effective sky temperatures for several Martian atmospheric
models/Estimation of the parameters in exponential decontamination
models for contamination and pollution prediction/Mathematical
models for count data/Exponential decontamination
model(s) for microbial burden prediction. Vol. VIII. Revisions to Vo
model(s) for microbial burden prediction. Vol. X. Final report adden
moisture/The sterilizing action of gaseous ethylene oxide. IV. The e
(MOLESINK)JPL develops double vacuum chamber for spacecraft tests/
(Moon)A search for viable organisms in a lunar sample/
(Moon)An approach to computerized bacterial identification/
Moon/Biological contamination of the
(Moon)Outbound lunar biological contamination control: Policy and re
(Moon)Outbound spacecraft: Basic policy relating to lunar and planet
(Moon)Planetary quarantine/
(Moon)Sterilizing space probes/
(Moon)Technical manuals and planning study in planetary quarantine/
(Moon)Technical manuals and planning study in planetary quarantine/
(Moon)User's manual for the planetary quarantine lunar information s

Ni-Cd battery development. Vol. 1. Electrochemistry of heat steriliz
nitrogen gas/Enumeration of viable microorganisms in
Noncontaminating separation systems for spacecraft (Project Zip)/
Organic constituent inventory for planetary flight missions/oxide/Evaluation of sterilization by gaseous Panspermia revisited, or have we already contaminated Mars?/particle physics/Fine particulate contamination/A microscopic method of particulate contamination/Monitoring airborne (particulates)A preliminary analysis of the radiation burden of a ty (particulates)Air filtration of microbial particles/ (particulates)Bacterial penetration of Robbins BCO filter/ (particulates)Bibliography. Codes, standards, procedures, specificat (particulates)Contamination control: a very old, new field/ (particulates)Contamination control handbook for ground fluid system (particulates)Degradation due to contaminants throughout the test cy (particulates)Design of clean rooms. A classified list of selected r (particulates)Some new concepts in contamination control for Titan I (particulates)Some problems posed by the planet Venus/ (particulates)The vacuum probe sampler/ Pilot Assembly Sterilizer System (PASS)/Sterile access studies in th planetary and lunar space vehicles. An engineering examination/Steri planetary biological contamination control/Outbound planetary capsules/Test environments associated with the sterilizati planetary contamination by space probes/The probability of planetary contamination by terrestrial microorganisms/Analytical bas planetary contamination control/Outbound spacecraft: Basic policy re planetary contamination probabilities by non-landing vehicles/Estima planetary contamination/Procedures necessary for the prevention of Planetary contamination. II. Soviet and U.S. practices and policies/ planetary contamination/Spacecraft sterilization and the prevention (planetary environments)Release of microorganisms from solids after planetary landers/Design requirements for the sterilization containe planetary landers/Sterilization procedures for (planetary landers)Study of the biological cleanability of surfaces Planetary microbiological contamination log/ Planetary missions/Examination of engineering requirements and proce Planetary quarantine/ Planetary quarantine/ Planetary quarantine analysis/ Planetary quarantine analysis/ Planetary quarantine analysis/ Planetary quarantine/Analytical techniques in planetary quarantine and spacecraft sterilization/Planning, evaluati planetary quarantine and spacecraft sterilization/Planning, evaluati planetary quarantine and spacecraft sterilization/Planning, evaluati planetary quarantine. I. Assay methodology. II. Natural die-off of c planetary quarantine/Basic studies in environmental microbiology as planetary quarantine constraints. I. An introduction to the problems
planetary quarantine constraints/Re-evaluation of
Planetary Quarantine Department/
Planetary Quarantine Department/
Planetary Quarantine Department/
(Planetary quarantine)Detection of low levels of microbial contamination/
(Planetary quarantine)Die-off of microbial contamination/
(Planetary quarantine)Quarantine document system operations manual/
planetary quarantine/Environmental microbiology as related to
planetary quarantine/Environmental microbiology as related to
planetary quarantine/Environmental microbiology as related to
(Planetary quarantine)Estimation of microbial release probabilities
planetary quarantine/Laminar air flow in
planetary quarantine/lunar information system/User's manual for the
planetary quarantine/Microbiological studies on
Planetary quarantine operations/
Planetary quarantine operations/
planetary quarantine plan/Mariner Mars 1969
planetary quarantine plan/Mariner Mars 1971
planetary quarantine plan Voyager project/
Planetary quarantine program/
planetary quarantine requirements for spacecraft sterilization. Vol.
planetary quarantine requirements of NASA. Evaluation of a vertical
planetary quarantine requirements of NASA; germicidal activity of et
planetary quarantine requirements of NASA. Reduction of bacterial di
planetary quarantine requirements of NASA. Reduction of bacterial di
planetary quarantine requirements of NASA. Reduction of bacterial di
planetary quarantine requirements of NASA. Reduction of bacterial di
planetary quarantine requirements of NASA. Reduction of microbial di
planetary quarantine requirements of NASA. Reduction of microbial di
planetary quarantine requirements of NASA. Reduction of microbial di
planetary quarantine requirements of NASA. Reduction of microbial di
planetary quarantine requirements of NASA/Services provided in suppo
planetary quarantine requirements of NASA under Contract W-13,062/Se
planetary quarantine/Scientific publications and presentations relat
(Planetary quarantine)Semiannual review of research and advanced dev
(Planetary quarantine)Semiannual review of research and advanced dev
(Planetary quarantine)Space hardware assay methodology/
planetary quarantine/Spacecraft sterilization and
Planetary quarantine, SPT/OSSA program/
(Planetary quarantine)Sterilization and quarantine parameters for co
radiation/A study of the factors influencing sterilization by heat a
radiation/Adaptation of microorganisms to
(radiation) An improved method of spacecraft sterilization/
(radiation) An investigation of a sono-chemical approach in steriliza
radiation burden of a typical Mars lander mission/A preliminary anal
(radiation) Contamination control: a very old, new field/
(radiation) Effect of ultraviolet on the survival of bacterial airbor
radiation effects for bacterial inactivation/Optimizing thermal and
(radiation) Efficiency of sterilization by making use of ethylene oxi
radiation in space/ The biological effectiveness of solar electromagn
(radiation) Instrumentation and methodology in measurement of viable
(radiation) Investigation of microbial contamination inside irradia
t(radiation) Natural environment criteria for the NASA Space Station P
radiation on microorganisms/ Effects of continuous and interrupted
(radiation) Physical methods of sterilization of microorganisms/
(radiation) Recent advances in microbiological environmental control/
(radiation) Space environment criteria guidelines for use in space ve
(radiation) Spacecraft preparation and sterilization as state of the
radiation sterilization in combined techniques/
(radiation) Sterilization literature abstracts/
(radiation) Survey of electronic components/
(radiation) Test laboratory/RTG
radioisotope thermoelectric and thermionic power generators/Parametr
(radioisotope thermoelectric generator) A preliminary analysis of the
radioisotope thermoelectric generator/ Compatibility and shielding an
RTG [radioisotope thermo-electric generator] radiation test laborato
radioisotope thermoelectric generators for outer planet missions/Rev
radioisotope tracer techniques/ Study of the biological cleanability
recontamination of spacecraft and the probability of contamination o
(recontamination) Spacecraft sterilization - A new engineering and sa
(recontamination) The objectives and technology of spacecraft sterili
(relative humidity) Adsorption of formaldehyde by various surfaces du
(relative humidity) An automatic ethylene oxide decontamination syste
(relative humidity) Beta-propiolactone vapor as a disinfectant/
relative humidity/ Developing dry heat D-values/Dry heat destruction
relative humidity/ Dry heat destruction rates of microorganisms on su
(relative humidity) Encapsulation, electronics, eccofoam/
(relative humidity) Microbiological aspects of ethylene oxide sterili
(relative humidity) Microbiological aspects of ethylene oxide sterili
relative humidity on the penetrability and sporicidal activity of fo
(relative humidity) Quarterly status report on NASA contract R-35/
(relative humidity) Quarterly status report on NASA contract R-35/
(relative humidity) Sterilization of interplanetary spacecraft/
(relative humidity) Sterilization of spacecraft/
(relative humidity) Sterilization with methyl bromide vapor/
(relative humidity) Sterilizing techniques with ethylene oxide/
(relative humidity) Studies for sterilization of space probe componen
(relative humidity) The types of biological indicators used in monito
(requirements) Potentially harmful effects of space experiments/ 184
(requirements) Probability of biological contamination of Mars/ 232
(requirements) Quarantine document system operations manual/ 430
(requirements) Severe Voyager sterilization criteria set/ 162
(requirements) Space probe sterilization/ 61
(requirements) Spacecraft sterilization/ 169
(requirements) Spacecraft-sterilization issue may effect pace of Mars 237
(requirements) Standard procedures for the microbiological examinati 211
(requirements) Status review of technology developments for spacecraft 293
(requirements) Sterile access studies in the Pilot Assembly Sterilize requirements/Sterilization 345
(requirements) Sterilization and quarantine parameters for considerat 185
(requirements) Sterilization group report No. I/ 141
(requirements) Sterilizing space probes/ 193
(requirements) Surveyor spacecraft system. Vol. I/ 83
(requirements) Surveyor spacecraft system. Vol. II/ 84
(requirements) Test environments associated with the sterilization of 197
(resistance) The National Aeronautics and Space Administration posi 96
(resistance) Effects of continuous and interrupted radiation on micro 241
(resistance) Microbiological aspects of ethylene oxide sterilization. 466
Resistance of certain strains of microorganisms to ultraviolet rays 282
resistance of microorganisms to dry heat: Design of apparatus, opera 27
(resistance) Some biological and physical factors in dry heat sterili 89
resistance studies/Reproducibility of results in dry heat 481
(resistance) The types of biological indicators used in monitoring st 480
resistance to ethylene oxide/Microbial 297
resistance to ethylene oxide/The age of Bacillus subtilis spores and 286

SADL facility/Sterilization assembly and development laboratory rout 260
sampler/The vacuum probe 542
(sampling) A distribution-free test for parallelism/ 455
(sampling) A stochastic approach to bioburden estimation and predicti 509
(sampling) A study program on the development of mathematical model(s 431
(sampling) An approach to computerized bacterial identification/ 403
(sampling) Approximations to the Bayes estimate for a quantal assay w 492
(sampling) Bayesian analysis for an exponential surveillance model 493
(sampling) Biodetection grinder/ 490
(sampling) Decontamination of enclosed spaces with Beta-propiolactone 40
sampling device/Development of an ultrasonic/vacuum 397
sampling device/Development of an ultrasonic/vacuum 519
sampling in sterile rooms/Control and 330
(sampling) Life in the clouds/ 376
(sampling) Microbiological analysis of snow and ice from the Antartci 471
(sampling) Microbiological barrier equipment and techniques. A state 173
(sampling) Microbiological barrier techniques/ 151
(sampling) Microbiological survey of environmentally controlled areas 217
(sampling) Monitoring airborne particulate contamination/ 360

-91-
sampling of surfaces/Vacuum probe; new approach to the microbiologic
(sampling)Planetary Quarantine Department/
(sampling)Research on microbiological sterilization problems/
(sampling)Semiannual review of research and advanced development/
(sampling)Semiannual review of research and advanced development. Vo
(sampling)Soil microbial and ecological investigations in the Antarc
(sampling)Sterilization with ethylene oxide gas mixtures/
(sampling)Study of contamination sensors. Vol. I/
sampling surfaces for microbiological contamination/Some statistical
(sampling)The ethylene oxide-Freon 12 decontamination procedure B. T
sensors. Vol. I/Study of contamination
separation systems for spacecraft (Project Zip)/Noncontaminating
simulated hard landings/Release of microorganisms from solids after
simulated Martian conditions/Bacteria
simulated Martian conditions/Multiplication of certain soil micro-or
simulated Martian dust clouds/Effect of ultraviolet on the survival
simulated Martian environment/Microorganisms under
simulated Martian environments/Biological contamination of Mars. I.
simulated Martian environments/Biological contamination of Mars. II.
simulated Martian environments/Studies with microorganisms and plant
simulated meteoroid impact/Microbial survival after
simulated planetary environments/Biochemical activities of terrestri
simulated space environments on the viability of microorganisms/Effect
simulated space/Study of viability of microorganisms in
(simulation)Bacterial growth in agar subjected to freezing and thawi
(simulation)Biostatistics and space exploration: Microbiology and st
(simulation)Biostatistics of space exploration: microbiology and ste
(simulation)Estimation of microbial survival in heat sterilization/
simulation facility for bacterial studies/A Martian surface
(simulation)Ninth monthly status report on Contract NASw-1734/
simulation of a Mars-entry-capsule aeroshell environmental history/
simulation/Optimization of oven-heating profiles in spacecraft ster
(simulation)Planetary quarantine/
(simulation)Planetary quarantine, SPT (OSSA program)/
(simulation)Semiannual review of research and advanced development/
(simulation)Semiannual review of research and advanced development.
(simulation)Semiannual review of research and advanced development.
(simulation)Services provided in support of the planetary quarantine
soil algal crusts: scanning electron and optical microscope study/An
(soil)Bacterial growth in agar subjected to freezing and thawing. I/
(soil)Bacterial growth in agar subjected to freezing and thawing. II
(soil)Desert microflora/
(soil)Dry-heat inactivation kinetics of naturally occurring spore po
soil exposed to five years of continuous very high vacuum/Survival o
Soil microbial and ecological investigations in the Antarctic interi
(soil)Microbiological analysis of snow and ice from the Antarctic in
(soil)Microorganism study: Bacterial isolants from harsh
soil micro-organisms under simulated Martian conditions/Multiplicati
(soil)Systematic description of bacterial isolants from rigorous env
soils and environments/Ability of microorganisms to establish ecolog
solar electromagnetic radiation in space/The biological effectivenes
solar panel/Investigation of bacterial contamination inside
sonic and ultrasonic waves/Sterilizing effects of high intensity air
songo-chemical approach in sterilization problems/An investigation of
sonochemical sterilization/Synergistic effects in
space; a kinetic comparison/Microbial sterilization in ultra-high va
Space age microbiology/
Space and spacecraft environment/
space at orbital altitudes during Gemini satellite experiments/The s
space biology/Gnotobiotics in relation to
(space capsule)Voyager effort focused on sterilization/
Space environment criteria guidelines for use in space vehicle devel
space environment/The
space environment/The effect of ultraviolet radiation upon microorga
space environment/The interaction of living systems with the
space environments on the viability of microorganisms/Effects of sim
space experiments/Potentially harmful effects of
space exploration: Microbiology and sterilization/Biostatistics and
space exploration: microbiology and sterilization/Biostatistics of
space. Further rocket and balloon borne exposure experiments/The surv
Space hardware assay methodology/
(space hardware)Environmental microbiology as related to planetary q
space hardware/Methodology of measuring internal contamination in
space hardware; NASA's current edition/Procedures for the microbiolo
space hardware/Standard procedures for the microbiological examinati
space probe components/Sterilization of
space probe components/Sterilization of
space probe components/Studies for sterilization of
space probe components/Studies for sterilization of
space probe components/Studies for sterilization of
(space probe)Development of a typical Mars probe sterilization conta
Space probe sterilization/
Space probe sterilization/
Space probe sterilization/
Space probe sterilization/
Space probes/Dry-heat sterilization: Its development and application
Space probes/Sterilizing
Space probes/The probability of planetary contamination by
Space program/Report to COSPAR, French
Space research/A general review of chemical sterilization in
Space research/Contributions of microbiological safety to
space/Study of viability of microorganisms in simulated
Space suits/Services provided in support of the planetary quarantine
Space suits/Services provided in support of the planetary quarantine
Space suits/Services provided in support of the planetary quarantine
Space/The biological effectiveness of solar electromagnetic radiatio
Space/The microbiological challenge in
(space vehicle)Adaptive allocation of planetary quarantine violation
(space vehicle)An investigation of a sono-chemical approach in steri
Space vehicle components/Ecology and thermal inactivation of microbe
Space vehicle components/Ecology and thermal inactivation of microbe
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space vehicle components/Ecology and thermal inactivation of microbe</td>
<td>165</td>
</tr>
<tr>
<td>Space vehicle components/Ecology and thermal inactivation of microbe</td>
<td>166</td>
</tr>
<tr>
<td>Space vehicle components/Ecology and thermal inactivation of microbe</td>
<td>167</td>
</tr>
<tr>
<td>Space vehicle components/Ecology and thermal inactivation of microbe</td>
<td>168</td>
</tr>
<tr>
<td>Space vehicle components/Ecology and thermal inactivation of microbe</td>
<td>235</td>
</tr>
<tr>
<td>Space vehicle components/Ecology and thermal inactivation of microbe</td>
<td>284</td>
</tr>
<tr>
<td>Space vehicle components/Ecology and thermal inactivation of microbe</td>
<td>502</td>
</tr>
<tr>
<td>Space vehicle components/Ecology and thermal inactivation of microbe</td>
<td>503</td>
</tr>
<tr>
<td>Space vehicle components/Ecology and thermal inactivation of microbe</td>
<td>504</td>
</tr>
<tr>
<td>Space vehicle components/Ecology and thermal inactivation of microbe</td>
<td>505</td>
</tr>
<tr>
<td>Space vehicle components/Ecology and thermal inactivation of microbe</td>
<td>150</td>
</tr>
<tr>
<td>Space vehicle development (1969 revision) / Space environment criteria</td>
<td>539</td>
</tr>
<tr>
<td>Space vehicle Engineering problems in capsule sterilization /</td>
<td>205</td>
</tr>
<tr>
<td>Space vehicle Estimation of planetary contamination probabilities b</td>
<td>422</td>
</tr>
<tr>
<td>Space vehicle New concepts on sterilization. I. Alternatives to red</td>
<td>322</td>
</tr>
<tr>
<td>Space vehicle Spacecraft sterilization procedures in the USSR. Meet</td>
<td>206</td>
</tr>
<tr>
<td>Space vehicle Sterilization problem / The</td>
<td>189</td>
</tr>
<tr>
<td>Space vehicles. An engineering examination / Sterilization of unmanned</td>
<td>72</td>
</tr>
<tr>
<td>Space vehicles / Sterilization of lunar and planetary</td>
<td>53</td>
</tr>
<tr>
<td>Space vehicles: the problem of mutual contamination / Sterilization of</td>
<td>50</td>
</tr>
<tr>
<td>Space vehicles to prevent extraterrestrial biological contamination /</td>
<td>21</td>
</tr>
<tr>
<td>Spacecraft A feasibility study of liquid sterile insertion /</td>
<td>371</td>
</tr>
<tr>
<td>Spacecraft A research study to definitize a bio-isolation suit syst</td>
<td>252</td>
</tr>
<tr>
<td>Spacecraft A study program on the development of mathematical model</td>
<td>431</td>
</tr>
<tr>
<td>Spacecraft A study program on the development of mathematical model</td>
<td>432</td>
</tr>
<tr>
<td>Spacecraft An approach to computerized bacterial identification /</td>
<td>403</td>
</tr>
<tr>
<td>Spacecraft Analysis of microbial release probabilities /</td>
<td>420</td>
</tr>
<tr>
<td>Spacecraft and the probability of contamination of a planet / Analysis</td>
<td>460</td>
</tr>
<tr>
<td>Spacecraft assembly areas Ability of microorganisms to establish ec</td>
<td>299</td>
</tr>
<tr>
<td>Spacecraft assembly Compatibility of sterilization and contamination</td>
<td>316</td>
</tr>
<tr>
<td>Spacecraft assembly facility operations / Microbiological monitoring</td>
<td>94</td>
</tr>
<tr>
<td>Spacecraft assembly facility operations / Microbiological monitoring</td>
<td>342</td>
</tr>
<tr>
<td>Spacecraft assembly facility operations / Microbiological monitoring</td>
<td>398</td>
</tr>
<tr>
<td>Spacecraft assembly facility operations / Microbiological monitoring</td>
<td>526</td>
</tr>
<tr>
<td>Spacecraft: Basic policy relating to lunar and planetary contamination</td>
<td>267</td>
</tr>
<tr>
<td>Spacecraft Biocontamination control /</td>
<td>203</td>
</tr>
<tr>
<td>Spacecraft Compatibility of Centaur / Surveyor materials with Freon-1</td>
<td>87</td>
</tr>
<tr>
<td>Spacecraft components A microscopic method of particulate contamination</td>
<td>501</td>
</tr>
<tr>
<td>Spacecraft components are subjected during manufacture / Detection and</td>
<td>128</td>
</tr>
<tr>
<td>Spacecraft components / Effect of current cleaning procedures on steri</td>
<td>275</td>
</tr>
<tr>
<td>Spacecraft components / Effect of current cleaning procedures on steri</td>
<td>361</td>
</tr>
<tr>
<td>Spacecraft components / Microbial contaminants in the interiors of</td>
<td>216</td>
</tr>
<tr>
<td>Spacecraft components Research on microbiological sterilization pro</td>
<td>116</td>
</tr>
<tr>
<td>Spacecraft components / Thermal death studies on microbial spores and</td>
<td>102</td>
</tr>
<tr>
<td>Spacecraft containing a radioisotope thermoelectric generator / Compat</td>
<td>479</td>
</tr>
<tr>
<td>Spacecraft Contamination of Mars /</td>
<td>324</td>
</tr>
<tr>
<td>Spacecraft Controlled contamination: A practical approach for develo</td>
<td>69</td>
</tr>
<tr>
<td>Spacecraft Decontamination of AIMP-D</td>
<td>258</td>
</tr>
<tr>
<td>Spacecraft Degradation due to contaminants throughout the test cyci</td>
<td>489</td>
</tr>
</tbody>
</table>
spores on surfaces: effect of humidity in an open system/Dry-heat de
spores on test surfaces/Electrostatic deposition device to deposit m
(spor)Planetary Quarantine Department/
(spor)Planetary quarantine program/
(spor)Planetary quarantine, SPT (OSSA program)/
(spor)Quarterly report on NASA contract R-35/
(spor)Quarterly status report on NASA contract R-35/
(spor)Quarterly status report on NASA contract R-35/
(spor)Reproducibility of results in dry heat resistance studies/
(spor)Services provided in support of the planetary quarantine req
(spor)Services provided in support of the planetary quarantine req
(spor)Services provided in support of the planetary quarantine req
(spor)Services provided in support of the planetary quarantine req
(spor)Services provided in support of the planetary quarantine req
(spor)Services provided in support of the planetary quarantine req
(spor)Services provided in support of the planetary quarantine req
(spor)Services provided in support of the planetary quarantine req
(spor)Some biological and physical factors in dry heat sterilizati
(spor)Sterilization with methyl bromide vapor/
(spor)Sterilizing effects of high intensity airborne sonic and ult
spores/Studies on trace elements in the sporulation of bacteria and
(spor)Synergistic effects in sonochemical sterilization/
(spor)The bacteriology of "clean rooms"/
(spor)The possibility of using hydrogen peroxide mixed with a dete
(spor)The probability of planetary contamination by space probes/
(spor)The sterilizing action of gaseous ethylene oxide. II. Steril
(spor)The sterilizing action of gaseous ethylene oxide. IV. The ef
(spor)The survival of microorganisms in space. Further rocket and
(spor)Twenty-first semiannual report to Congress/
spores under several temperature and humidity conditions/Survival of
(spor)Vacuum probe: new approach to the microbiological sampling o
sporicidal activity of ethylene oxide/Microbiological aspects of eth
sporicidal activity of ethylene oxide/Microbiological aspects of eth
sporicidal activity of ethylene oxide/Ther
sporicidal activity of formaldehyde/Effect of relative humidity on t
sporulation of bacteria and the germination of bacterial spores/Stud
standardization of a method for sampling surfaces for microbiologica
steam and formaldehyde/Disinfection of heat-sensitive material by lo
sterilant gases/Compatibility of Centaur/Surveyor materials with Fre
sterilants in terrestrial and extraterrestrial environments/Efficien
sterile assembly techniques/An experimental study of
sterile assembly techniques/Experimental study of
sterile assembly techniques. Vol. 1/Experimental study of
sterile insertion/A feasibility study of liquid
sterile insertion engineering model hardware/Development of mechan
sterile insertion/Liquid
sterile insertion repair technique/Develop and test of a
sterile insertion system. Quality assurance/Mechanical
sterile insertion techniques/Design feasibility study of
sterile insertion techniques for spacecraft/Investigation of the rel
sterilising properties of ethylene oxide/Th
Sterilizable accelerometer development program/
stabilizable and impact resistant Ni-Cd battery development. Vol. 1.
Sterilizable battery/
stabilizable battery/Development of the
stabilizable components for planetary quarantine. Vol. 1/Definition
Sterilizable photomultiplier tubes/
stabilizable piece parts/Matrix test of
stabilizable piece parts/Matrix test of
stabilizable polymeric battery separator/Investigations on
Sterilizable status sheets. Vol. II/
stabilization/A bacterial spore test piece for the control of ethyle
(sterilization)A feasibility study of liquid sterile insertion/
stabilization: A general review/Some biological and physical factors
sterilization - A new engineering and sanitation technology/Spacecraft
Sterilization. A selected bibliography from the literature retrieval
sterilization/A study of the effectiveness of theromradiation
sterilization, I. Alternatives to reduce the problems from terminal
sterilization/An engineer looks at spacecraft
sterilization/An improved method of spacecraft
sterilization and assembly of spacecraft/The assembly/sterilizer - A
sterilization and contamination control with application to spacecraft
sterilization and contamination of Mars/Spacecraft
sterilization and ethylene oxide decontamination environments/Enviro
sterilization and planetary quarantine/Spacecraft
Sterilization and quarantine parameters for consideration during the
sterilization and the prevention of planetary contamination/Spacecraft
sterilization and thermal vacuum exposures/Spacecraft polymeric mate
Sterilization, Appendix C (with 8 nomogram enclosures)/Comparative s
sterilization as state of the art/Spacecraft preparation and
Sterilization assembly and development laboratory routine cleaning a
sterilization assembly development laboratory/Biological monitoring
sterilization at 200°/Hot air
(sterilization)Bactericidal activity of ethylene oxide and methyl br
sterilization/Biological-chemical indicator for ethylene oxide
(sterilization)Biological contamination control/
stereillization/Biostatistics of space exploration: Microbiology and
sterilization/Biostatistics of space exploration: microbiology and
sterilization by gaseous oxide/Evaluation of
sterilization by heat and radiation/ A study of the factors influenci
sterilization by making use of ethylene oxide and methyl bromide mix
sterilization canister separation joint/Capsule
Sterilization/Comparative studies of conceptual design and qualifica
sterilization, I; Compatibility of materials and components with heat
sterilization, I. Concentration and temperature effects/Ethylene oxi
sterilization container/Development of a typical Mars landing capsul
sterilization container/Development of a typical Mars landing capsul
sterilization container/Development of a typical Mars landing capsul
sterilization container/Development of a typical Mars probe
sterilization containers of planetary landers/Design requirements fo
| sterilization/Contamination and | 191 |
| sterilization/Contamination and | 473 |
| (sterilization)Contamination of Mars/ | 324 |
| sterilization criteria set/Severe Voyager | 162 |
| (sterilization cycles)Services provided in support of the planetary | 438 |
| (sterilization)Dangers of contamination of planets and the Earth/ | 49 |
| sterilization/Development and application of a system model for space | 344 |
| sterilization/Development of concepts for improved spacecraft | 158 |
| (sterilization)EASL/SADL test and operations. Phase II/ | 320 |
| (sterilization)Ecology and thermal inactivation of microbes in and o | 504 |
| (sterilization)Ecology and thermal inactivation of microbes in and o | 505 |
| sterilization. III. Effects of humidity and water activity on the sp | 468 |
| sterilization efficacy of gaseous formaldehyde/Investigations on the | 1 |
| (sterilization)Eleventh COSPAR session/ | 354 |
| sterilization/Engineering problems in capsule | 205 |
| (sterilization)Estimation of microbial release probabilities from a | 518 |
| sterilization/Estimation of microbial survival in heat | 326 |
| (sterilization)Ethylene oxide-Freon 12 decontamination procedure: Re | 257 |
| (sterilization)Ethylene oxide resistance of nondeisiccated and desicc | 406 |
| (sterilization)Evaluation of alcohol sporulation method/ | 356 |
| sterilization. I. Experimental apparatus and methods/Microbiological | 466 |
| Sterilization facility concepts/ | 24 |
| sterilization/Feasibility study for combined method of | 122 |
| sterilization/Gaseous | 41 |
| Sterilization group report No. 1/ | 141 |
| Sterilization handbook/ | 91 |
| sterilization. Immaculate Voyager will visit Mars/Spacecraft | 169 |
| sterilization in combined techniques/The place of | 306 |
| sterilization in space research/A general review of chemical | 104 |
| sterilization in spacecraft design/Effect of | 62 |
| sterilization in ultra-high vacuum and outer space: a kinetic compar | 384 |
| (sterilization)Industrial applications of laminar airflow/ | 434 |
| sterilization. II. Influence of method of humidification/Ethylene ox | 55 |
| sterilization. IV. Influence of thickness of polyethylene film on th | 469 |
| (sterilization)Investigation of spacecraft materials that support mi | 465 |
| sterilization; Its development and application to components of exob | 67 |
| Sterilization literature abstracts/ | 201 |
| (sterilization)Mathematical basis for a diffusion model of microbial | 425 |
| sterilization methods aired at COSPAR/Soviet spacecraft | 172 |
| sterilization/Methods for spacecraft | 239 |
| (sterilization)Microbial contamination in clean rooms/ | 155 |
| sterilization. II. Microbial resistance to ethylene oxide/Microbiolo | 467 |
| (sterilization)Microbiologic filters - liquid and gas/ | 99 |
| (sterilization)Microbiological barrier techniques/ | 151 |
| sterilization/Microbiological contamination control in spacecraft | 188 |
| sterilization modeling/Dry heat | 383 |
| sterilization modeling/Dry heat | 409 |
| (sterilization)Ninth monthly status report on Contract NASW-1734/ | 368 |
| Sterilization of instruments and materials with Beta-propiolactone/ | 19 |
Sterilization of interplanetary spacecraft / 454
sterilization of large interplanetary structures / Experimental heat c 287
Sterilization of lunar and planetary space vehicles / 53
sterilization of microorganisms / An analysis of vacuum effects in the 382
sterilization of microorganisms at 105°C / A study of dry heat 222
sterilization of microorganisms / On the role of DNA in wet heat 385
sterilization of microorganisms / Physical methods of 2
sterilization of planetary capsules / Test environments associated wi 197
sterilization of potting compounds and mated surfaces / Investigation 331
sterilization of potting compounds and mated surfaces / Investigation 332
Sterilization of space probe components / 51
Sterilization of space probe components / 59
sterilization of space probe components / Studies for 73
sterilization of space probe components / Studies for 101
sterilization of space probe components / Studies for 138
Sterilization of space vehicles: the problem of mutual contamination 50
sterilization of space vehicles to prevent extraterrestrial biologic 21
Sterilization of spacecraft / 318
sterilization of spacecraft components / Effect of current cleaning pr 275
sterilization of spacecraft components / Effect of current cleaning pr 361
sterilization of spacecraft components / Thermal death studies on micr 102
sterilization of spacecraft structures / Thermal 161
sterilization of spacecraft using Cobalt 60 / Feasibility of thermorad 459
sterilization of spores in hygroscopic environments / Ethylene oxide 18
Sterilization of suspensions of Serratia marcescens and spores of Ba 9
sterilization of unmanned lunar and planetary missions / Examination o 58
Sterilization of unmanned planetary and lunar space vehicles. An eng 72
sterilization of unmanned space vehicles / Problems in 98
sterilization operations / Scale-up of heat 43
sterilization / Optimization of oven-heating profiles in spacecraft 426
(sterilization) / Planetary quarantine analysis / 445
(sterilization) / Planetary Quarantine Department / 226
(sterilization) / Planetary quarantine program / 329
sterilization / Planning, evaluation and analytical studies in planet 418
sterilization / Planning, evaluation, and analytical studies in planet 428
sterilization / Planning, evaluation and analytical studies in spacecr 429
(sterilization) / Potentially harmful effects of space experiments / 184
(sterilization) / Present day usage of clean rooms in medical and life 351
sterilization problem / The space 189
sterilization problems / An investigation of a sono-chemical approach 153
sterilization problems on a Mars atmospheric entry probe. Vol. I 177
sterilization problems / Research on microbiological 116
Sterilization procedures for planetary landers / 441
(sterilization) / Procedures for the microbiological examination of spa 346
sterilization procedures in the USSR. Meeting on sterilization of sp 206
(sterilization) / Procedures necessary for the prevention of planetary 132
sterilization / Proceedings of the conference on spacecraft 63
sterilization process calculation for spacecraft / Terminal 300
sterilization process parameters / Determination of terminal 328

-101-
sterilization process times/Recommendations for determination of spa
sterilization processes/Some observations about and a bibliography o
sterilization processes/The types of biological indicators used in m
sterilization program at the Jet Propulsion Laboratory/Electronic pa
sterilization rates and protective influences/Ethylene oxide
Sterilization requirements/
sterilization requirements/A rational model for spacecraft
sterilization requirements/Effect of microbial release probabilities
(sterilization)Semiannual review of research and advanced developmen
(sterilization)Semiannual review of research and advanced developmen
sterilization/Space probe
sterilization/Status review of technology developments for spaceraf
sterilization/Status review of technology developments for spacecraft
sterilization studies/Ethylene oxide
sterilization. IV. Studies of sterilization techniques/
sterilization study/Valve bioload reduction and
Sterilization supporting activities/
Sterilization supporting activities/
Sterilization supporting activities/
sterilization/Synergistic effects in sonochemical
(sterilization)Synergistic effects of ethylene oxide and other agent
sterilization, techniques and equipment/Spacecraft
sterilization techniques on thermal control surfaces/Study of the ef
sterilization technology program: A status report/JPL spacecraft
sterilization technology/Spacecraft
(sterilization)The National Aeronautics and Space Administration pos
sterilization/The objectives and technology of spacecraft
sterilization/The objectives and technology of spacecraft
(sterilization)The possibility of using hydrogen peroxide mixed with
sterilization. Thermal considerations/Spacecraft
sterilization/Thermoradiation as a means of bacterial
sterilization times/Analytical method for calculating heat
(sterilization)Ultraclean technology/
sterilization. Vol. 1/Evaluation of current technology in attaining
sterilization/Voyager effort focused on
Sterilization with ethylene oxide gas mixtures/
sterilization with ethylene oxide/Simple improvised chambers for gas
Sterilization with methyl bromide vapor/
sterilization without special equipment/Ethylene oxide
sterilize interior surfaces of confined spaces/Penetration by gases
sterilize liquids and gases/Evaluation of the efficiency and reliabi
sterilized by heating/Development of quality assurance requirements
sterilizers/Principles in the design of continuous
sterilizing action of gaseous ethylene oxide. I. Review.
sterilizing action of gaseous ethylene oxide. II. Sterilization of c
sterilizing action of gaseous ethylene oxide. III. The effect of eth
sterilizing action of gaseous ethylene oxide. IV. The effect of mois
sterilizing agents on microorganisms/Astronautics information; Effec
Sterilizing effects of high intensity airborne sonic and ultrasonic
surfaces; studies to evaluate possible sources of variation in the e
surfaces/Study of the effect of JPL sterilization techniques on ther
surfaces using radioisotope tracer techniques/Study of the biologica
surfaces/Vacuum probe; new approach to the microbiological sampling
Surveyor spacecraft system. Vol. I/
Surveyor spacecraft system. Vol. II/
Surveyor sterilization. I: Compatibility of materials and components
Surveyor sterilization. IV. Studies of sterilization techniques/
survival after simulated meteoroid impact/Microbial
survival and growth of selected bacteria/Effect of diurnal freeze-th
survival in heat sterilization/Estimation of microbial
survival of bacteria airborne in simulated Martian dust clouds/Effect
Survival of microbial spores under several temperature and humidity
Survival of microbial spores under several temperature and humidity
Survival of microorganisms in desert soil exposed to five years of c
Survival of microorganisms in space. Further rocket and balloon born
Survival of terrestrial microorganisms in simulated Martian environm
surviving cells/Effect of heat treatment on the growth of

(temperature)A research study to definitize a bioisolator suit syste
(temperature)An automatic ethylene oxide decontamination system/
temperature and humidity conditions/Survival of microbial spores und
(temperature)Literature review of the compatibility of commercial ma
temperature relationships/The sterilizing action of gaseous ethylene
(temperature)Water on Venus?/
temperatures/Heat injury of Bacillus subtilis spores at ultrahigh
temperatures/Soil studies - Desert microflora. XI. Desert soil algae
temperatures/Thermal inactivation characteristics of Bacillus subtil
(terrestrial contaminants)Relationship of planetary quarantine to bi
terrestrial microorganisms in simulated Martian environments/Biologi
terrestrial microorganisms in simulated Martian environments/Biologi
terrestrial microorganisms in simulated planetary environments/Bioch
thermal and radiation effects for bacterial inactivation/
Thermal considerations/Spacecraft sterilization.
thermal control surfaces/Study of the effect of JPL sterilization te
thermal death of bacterial spores/Kinetics of heat activation and of
Thermal death studies on microbial spores and some considerations fo
thermal destruction apparatus/Design of
Thermal destruction of microorganisms/
Thermal inactivation characteristics of Bacillus subtilis at ultrahi
termal inactivation of bacterial spores/A probit method to interpre
thermal inactivation of microbes in and on interplanetary space vehi
thermal inactivation of microbes in and on interplanetary space vehi
thermal inactivation of microbes in and on interplanetary space vehi
thermal inactivation of microbes in and on interplanetary space vehi
thermal inactivation of microbes in and on interplanetary space vehi
thermal inactivation of microbes in and on interplanetary space vehi
thermal inactivation of microbes in and on interplanetary space vehi
thermal inactivation of microbes in and on interplanetary space vehi
thermal inactivation of microbes in and on interplanetary space vehi
thermal inactivation of microbes in and on interplanetary space vehi
thermal inactivation of microbes in and on interplanetary space vehi
thermal kill of viable organisms during Mars atmosphere entry/A stud
(thermal resistance)Feasibility study for combined method of sterili
Thermal resistance of microorganisms to dry heat: Design of apparatu
Thermal sterilization of spacecraft structures/
thermal vacuum exposures/Spacecraft polymeric material interactions
Thermoradiation
Thermoradiation as a means of bacterial sterilization/
thermoradiation inactivation of dry Bacillus subtilis var. niger spo
(thermoradiation)Planetary quarantine program/
(thermoradiation)Planetary quarantine program/
(thermoradiation)Planetary quarantine program/
thermoradiation sterilization/A study of the effectiveness of
thermoradiation sterilization of spacecraft using Cobalt 60/Feasibil
(thermoradiation sterilization)Planetary quarantine program/
thermoradiation synergism/Mathematical modeling of
(thermoradiation)The development of two closely controlled humidity
time, concentration and temperature relationships/The sterilizing ac
(time-temperature relationships)Sterilization handbook/
ultrahigh temperatures/Heat injury of Bacillus subtilis spores at
ultrahigh temperatures/Thermal inactivation characteristics of Bacil
ultra-high vacuum and outer space: a kinetic comparison/Microbial st
ultra-high vacuum on Bacillus subtilis var. niger/Effect of
(ultrahigh vacuum)Study of viability of microorganisms in simulated
ultra-high vacuum/The viability of microorganisms in
Ultrasonic cleaning: A bibliography/
ultrasonic/Vacuum sampling device/Development of an
ultrasonic/vacuum sampling device/Development of an
ultrasonic waves/Sterilizing effects of high intensity airborne soni
(ultrasonics)Development of concepts for improved spacecraft sterili
(ultrasonics)Study of the biological cleanability of surfaces using
ultraviolet on the survival of bacteria airborne in simulated Martia
(ultraviolet radiation)Feasibility study for combined method of sterili
(ultraviolet radiation)Multiplication of certain soil micro-organism
(ultraviolet radiation)Panspermia revisited, or have we already cont
(ultraviolet radiation)Sterilizable photomultiplier tubes/
ultraviolet radiation upon microorganisms as a principal external fa
ultraviolet rays/Resistance of certain strains of microorganisms to
unmanned lunar and planetary missions/Examination of engineering req
unmanned planetary and lunar space vehicles. An engineering examinat
unmanned spacecraft/Sterilizing

-105-
unmanned space vehicles/Problems in sterilization of

(USSR) Eleventh annual COSPAR session/

USSR. Meeting on sterilization of space vehicles, University of Calf

(USSR) Methods for spacecraft sterilization/

(USSR) Planetary contamination. II. Soviet and U.S. practices and pol

(USSR) Resistance of certain strains of microorganisms to ultraviolet

(USSR) Severe Voyager sterilization criteria set/

(USSR) Some observations about and a bibliography on the technologica

(USSR) Soviet spacecraft sterilization methods aired at COSPAR

(USSR) Viability of microorganisms in the desert soils of Turkmenia/

(vacuum) An approach to contamination identification/

(vacuum) Biological and chemical surface contamination. A recurring p

vacuum chamber for spacecraft tests/JPL develops double

(vacuum) Disinfection of heat-sensitive material by low-temperature s

vacuum effects in the sterilization of microorganisms/An analysis of

(vacuum) Ethylene oxide-Freon 12 decontamination procedure: Reactions

vacuum on Bacillus subtilis var. niger/Effect of ultra-high

(vacuum) Planetary quarantine, SPT (OSSA program)/

Vacuum probe: new approach to the microbiological sampling of surfac

(vacuum probe) Planetary quarantine/

vacuum probe sampler/The

vacuum probe surface samples/Testing and fabrication of plastic

vacuum/Survival of microorganisms in desert soil exposed to five yea

vacuum/The viability of microorganisms in ultra-high

Venezuelan equine encephalomyelitis virus/Virucidal activity of Beta

Venus exploration/Spacecraft-sterilization issue may effect pace of

Venus/Some problems posed by the planet

(Venus) Status review of technology developments for spacecraft steri

(Venus) The space environment/

 viability Analysis of microbial release probabilities/

 viability Analytical basis for the estimation of planetary contamin

 viability Bayesian analysis for an exponential surveillance model

 viability Bibliography. Codes, standards, procedures, specification

 viability Biological evaluation of the Biodetection Grinder/

 viability Design of thermal destruction apparatus/

 viability Die-off of microbial contamination/

 viability Effect of diurnal freeze-thawing on survival and growth o

 viability Effect of ultra-high vacuum on Bacillus subtilis var. nig

 viability Evaluation of a quantal response model with estimated con

 viability Evaluation of microbiological filters for liquids and gase

 viability Life in extraterrestrial environments/

 viability Methodology of measuring internal contamination in space

 viability Microorganisms in solid materials. Phases I, II, III, IV/

 viability Microorganisms under simulated Martian environment/

viability of microorganisms/Effects of simulated space environments

viability of microorganisms in simulated space/Study of

-106-
Viability of microorganisms in the desert soils of Turkmenia/ viability of microorganisms in ultra-high vacuum/The (viability) Planetary Quarantine Department/ (viability) Release of microorganisms from solids after simulated har (viability) Soil studies - Desert microflora. XI. Desert soil algae s (viability) Sterilization. A selected bibliography from the literatur (viability) Sterilizing effects of high intensity airborne sonic and (viability) Studies on trace elements in the sporulation of bacteria (viability) Studies with microorganisms and plants under simulated Ma (viability) Survival of microorganisms in desert soil exposed to five (viability) The biological effectiveness of solar electromagnetic rad (viability) The effect of ultraviolet radiation upon microorganisms a (viability) The level of microbial contamination in a clean room duri (viability) The probability of planetary contamination by space probe (viability) The sterilizing action of gaseous ethylene oxide. III. Th (viability) The sterilizing action of gaseous ethylene oxide. IV. The (viability) The types of biological indicators used in monitoring ste (viability) Thermal destruction of microorganisms/ viable and nonviable contamination/ Instrumentation and methodology i (viable) Biodetection grinder/ (viable microorganisms) Development of quality assurance requirements viable microorganisms in nitrogen gas/ Enumeration of viable organism penetration of bio-barrier meteoroid holes/ Flight ca viable organisms during Mars atmosphere entry/ A study of thermal kil viable organisms in a lunar sample/ A search for (Viking '75) Contamination and sterilization/ (Viking '75) Implications of change in probability of microbial growt (Viking '75) Life detection systems/ (Viking '75) Planning, evaluation, and analytical studies in planetar (Viking '75) Quarantine document system operations manual/ Viruscidal activity of Beta-propiolactone vapor. II. Effect on the et virus/ Viruscidal activity of Beta-propiolactone vapor. I. Effect of B Voyager capsule flight equipment type approval and flight acceptanc (Voyager) Contamination and sterilization/ Voyager effort focused on sterilization/ (Voyager) Flight capsule contamination probability from viable organi Voyager project/ Planetary quarantine plan (Voyager) Spacecraft-sterilization issue may effect pace of Mars and (Voyager) Sterilization and quarantine parameters for consideration d Voyager sterilization criteria set/ Severe Voyager will visit Mars/ Spacecraft sterilization. Immaculate water contents/ Heat resistance of Bacillus subtilis spores in atmosp Water on Venus?/ (wet heat) Physical methods of sterilization of microorganisms/ wet heat sterilization of microorganisms/ On the role of DNA in X-rays upon dry bacterial spores/ Effect of Gamma and
Below is an alphabetical list of journals in which articles germane to planetary quarantine have been published. The number of articles from each journal cited in this bibliography is indicated parenthetically.

<table>
<thead>
<tr>
<th>Journal Title</th>
<th>Articles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acta Pathologica et Microbiologica Scandinavica (Denmark)</td>
<td>(2)</td>
</tr>
<tr>
<td>Aerospace Medicine</td>
<td>(1)</td>
</tr>
<tr>
<td>Aerospace Technology</td>
<td>(1)</td>
</tr>
<tr>
<td>Agricultural Engineering</td>
<td>(1)</td>
</tr>
<tr>
<td>American Journal of Hygiene</td>
<td>(5)</td>
</tr>
<tr>
<td>American Journal of Public Health</td>
<td>(1)</td>
</tr>
<tr>
<td>American Pharmaceutical Association Scientific Edition</td>
<td>(1)</td>
</tr>
<tr>
<td>Annual Review of Microbiology</td>
<td>(1)</td>
</tr>
<tr>
<td>Antarctic Journal of the United States</td>
<td>(2)</td>
</tr>
<tr>
<td>Applied Microbiology</td>
<td>(33)</td>
</tr>
<tr>
<td>Astronautics and Aeronautics</td>
<td>(3)</td>
</tr>
<tr>
<td>Astronautics and Aerospace Engineering</td>
<td>(1)</td>
</tr>
<tr>
<td>Aviation Week and Space Technology</td>
<td>(2)</td>
</tr>
<tr>
<td>Bacteriological Proceedings</td>
<td>(1)</td>
</tr>
<tr>
<td>Bacteriological Reviews</td>
<td>(1)</td>
</tr>
<tr>
<td>Biometrics</td>
<td>(1)</td>
</tr>
<tr>
<td>Contamination Control</td>
<td>(9)</td>
</tr>
<tr>
<td>Cryogenic Technology</td>
<td>(2)</td>
</tr>
<tr>
<td>Food Research</td>
<td>(2)</td>
</tr>
<tr>
<td>Food Technology</td>
<td>(1)</td>
</tr>
<tr>
<td>Health Laboratory Science</td>
<td>(1)</td>
</tr>
<tr>
<td>Hospitals</td>
<td>(1)</td>
</tr>
<tr>
<td>Inhalation Therapy</td>
<td>(1)</td>
</tr>
<tr>
<td>International Science and Technology Magazine</td>
<td>(1)</td>
</tr>
<tr>
<td>Journal of Applied Bacteriology</td>
<td>(2)</td>
</tr>
<tr>
<td>Journal of Bacteriology</td>
<td>(2)</td>
</tr>
<tr>
<td>Journal of Clinical Pathology</td>
<td>(1)</td>
</tr>
<tr>
<td>Journal of Spacecraft and Rockets</td>
<td>(2)</td>
</tr>
<tr>
<td>Journal of the American Medical Association</td>
<td>(1)</td>
</tr>
<tr>
<td>Journal of the American Statistical Association</td>
<td>(1)</td>
</tr>
<tr>
<td>Journal of the Medical Laboratory Technology</td>
<td>(1)</td>
</tr>
<tr>
<td>Journal of the Pharmaceutical Sciences</td>
<td>(1)</td>
</tr>
<tr>
<td>Machine Design</td>
<td>(1)</td>
</tr>
<tr>
<td>Michigan State University Agricultural Experimental Station Quarterly Bulletin</td>
<td>(1)</td>
</tr>
<tr>
<td>Missiles and Rockets</td>
<td>(1)</td>
</tr>
<tr>
<td>Nature (United Kingdom)</td>
<td>(3)</td>
</tr>
<tr>
<td>Journal/Magazine</td>
<td>Count</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>New York State Journal of Medicine</td>
<td>(1)</td>
</tr>
<tr>
<td>Planetary Space Science</td>
<td>(1)</td>
</tr>
<tr>
<td>Proceedings of the National Academy of Sciences</td>
<td>(1)</td>
</tr>
<tr>
<td>Science</td>
<td>(3)</td>
</tr>
<tr>
<td>Science Journal</td>
<td>(1)</td>
</tr>
<tr>
<td>Space Aeronautics</td>
<td>(1)</td>
</tr>
<tr>
<td>Space Life Sciences</td>
<td>(4)</td>
</tr>
<tr>
<td>Spaceflight (United Kingdom)</td>
<td>(1)</td>
</tr>
<tr>
<td>Spore Newsletter (Australia)</td>
<td>(1)</td>
</tr>
<tr>
<td>Time</td>
<td>(1)</td>
</tr>
<tr>
<td>Transactions of the American Microscopical Society</td>
<td>(1)</td>
</tr>
</tbody>
</table>
Below is an alphabetical list of proceedings in which papers germane to planetary quarantine have appeared. The number of papers from each meeting cited in this bibliography is indicated parenthetically.

American Association for Contamination Control, Eighth Annual Technical Meeting and Exhibit, New York, May 1969. (2)

American Association for the Advancement of Science, Symposium on Extraterrestrial Biochemistry and Biology, Denver, 1961. (1)

American Astronautics Society, Symposium, Denver, February 1965. (1)

American Institute of Aeronautics and Astronautics, Meeting on Unmanned Spacecraft, Los Angeles, March 1965. (2)

American Institute of Aeronautics and Astronautics, Third Thermophysics Conference, Los Angeles, 1968. (1)

American Public Health Association, Annual Meeting, Chicago, October 1965. (1)

American Society for Microbiology, 65th Annual Meeting, Atlantic City, April 1965. (1)

European Contamination Control Symposium, First, Stuttgart, June 1970. (1)

IAS/NASA, National Meeting on Manned Space Flight, St. Louis, 1962. (1)

Institute of Environmental Sciences, 12th Annual Technical Meeting, Sterilization Technology Symposium, San Diego, April 1966. (3)

Institute of Environmental Sciences, 14th Annual Technical Meeting, St. Louis, April, 1968. (1)

Institute of Environmental Sciences, 15th Annual Technical Meeting, Anaheim, California, April 1969. (1)
Instrument Society of America, Annual Conference, Houston, Texas, October 1969. (3)

International Congress for Microbiology, 10th, Mexico City, August, 1970. (1)

International Federation of Automatic Control, Third Symposium on Automatic Control, Toulouse, France, March 1970. (1)

Jet Propulsion Laboratory and Lockheed Missile and Space Company, Proceedings of the First Symposium on Aerospace Mechanisms, Santa Clara, California, May 1966. (1)

NASA, Semiannual Spacecraft Sterilization Technology Seminar, Atlanta, April, 1970. (6)

NASA, Spacecraft Sterilization Technology Seminar, Cape Kennedy, Florida, February 1969. (1)

NASA/University of Virginia, Biospace Technology Training Program, Wallops Island, Virginia, August 1966. (1)

Symposium on Surface Contamination, Gatlinburg, Tennessee, June 1964.

U.S. Department of Agriculture, 10th Biological Safety Conference, Plum Island Animal Disease Laboratory, Greenport, Long Island, September 1965.
CORPORATE SOURCES

Below is an alphabetical address list of NASA centers, NASA contractors, and other sources of the material cited in this bibliography.

Aerospace Technology Division
Library of Congress
1st St. between East Capitol St. and Independence Ave, S.E.
Washington, D.C. 20540

American Association for Contamination Control
6 Beacon Street
Boston, Massachusetts 02108

Avco Corporation
Lowell Industrial Park
Lowell, Massachusetts 01851

Battelle Memorial Institute
505 King Avenue
Columbus, Ohio 43201

Becton Dickinson Research Center
P.O. Box #11276
Raleigh, North Carolina 27604

Bell Aerospace Company
Textron Inc.
Sunnyvale, California 94088

Biological Sciences Communication Project
The Medical Center
The George Washington University
2001 S Street, N.W.
Washington, D.C. 20009

The Bionetics Corporation
3221 North Armistead Avenue
Hampton, Virginia 23366

Boeing Company, Aerospace Group
P.O. Box #3999
Seattle, Washington 98124

Brooks Air Force Base
San Antonio, Texas 78235
Center for Disease Control
Phoenix Laboratories
4402 North Seventh Street
Public Health Service
U.S. Department of Health, Education and Welfare
Phoenix, Arizona 85014
(See also: Communicable Disease Center and National Communicable Disease Center)

Center for Disease Control
Public Health Service
Department of Health, Education and Welfare
Atlanta, Georgia 30333
(See also: Communicable Disease Center and National Communicable Disease Center)

Cincinnati Research Laboratories
Food and Drug Administration
1090 Tusculum Avenue
Cincinnati, Ohio 54226
(See also: National Center for Urban and Industrial Health and Robert A. Taft Sanitary Engineering Center)

Dynamic Science Corporation
1900 Walker Avenue
Monrovia, California 91016

Eagle-Picher Industries, Inc.
(Electronics Division)
C and Porter Streets
Box #47
Joplin, Missouri 64801

Electro-Mechanical Research Corp.
Princeton, New Jersey 08540

Exotech Systems, Incorporated
525 School St., S.W.
Washington, D.C. 20024
(See also: Exotech, Incorporated)

Florida State University
Department of Statistics
Tallahassee, Florida 32306

Fort Detrick
U.S. Department of the Army
Frederick, Maryland 21701

-115-
General Dynamics/Convair Aerospace Division
P.O. Box #1128
San Diego, California 92112
(See also: General Dynamics Astronautics)

General Electric Company
Re-entry and Environmental Systems Division
3198 Chestnut Street
Philadelphia, Pennsylvania 19101

George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama 35812

Goddard Space Flight Center
Greenbelt, Maryland 20771

Grumman Aerospace Corporation
South Oyster Bay Road
Bethpage, New York 11714

Hayes International Corporation
P.O. Box #2287
Birmingham, Alabama 35201

Hughes Aircraft Company
Aerospace Group
Centinela Avenue and Teale Street
Culver City, California 90230

IIT Research Institute
10 West 35th Street
Chicago, Illinois 60616

Jet Propulsion Laboratory
California Institute of Technology
4800 Oak Grove Drive
Pasadena, California 91103

Langley Research Center
Langley Station
Hampton, Virginia 23365

Litton Industries, Incorporated, Applied Science Division
13010 County Road 6,
Minneapolis Industrial Park
Minneapolis, Minnesota 55427

Lockheed Missiles and Space Company
P.O. Box #504
Sunnyvale, California 94088

Manufacturing Chemists Association, Inc.
1825 Connecticut Ave., N.W.
Washington, D.C. 20009
Martin Marietta Corp., Aerospace Group
P.O. Box #179
Denver, Colorado 80201
(See also: Martin Company)

McDonnell Douglas Astronautics Company, Eastern Division
P.O. Box #516
St. Louis, Missouri 63166

National Aeronautics and Space Administration
400 Maryland Ave., S.W.
Washington, D.C. 20546

National Institutes of Health
Bethesda, Maryland 20014

National Research Corporation
70 Memorial Drive
Cambridge, Massachusetts 02142

North American Rockwell Corporation
Technical Information Division
12214 Lakewood Boulevard
Downey, California 90241
(See also: North American Aviation, Incorporated)

Northrop Corporate Laboratories
3401 West Broadway
Hawthorne, California 90250

Oregon State University
Corvallis, Oregon 97331

Philco-Ford Corporation
Aerospace and Defense Systems Operations
Ford Road
Newport Beach, California 92663

St. Johns University
Grand Central and Utopia Parkway
Jamaica, New York 11432

Sandia Corporation
Sandia Base
P.O. Box #5800
Albuquerque, New Mexico 87115
(See also: Sandia Laboratories and Sandia Laboratory)

Syracuse University
Syracuse, New York 13210
Texas Instruments, Inc.
P.O. Box #5474
13500 North Central Expressway
Dallas, Texas 75222

University of California
Berkeley, California 94704

University of Minnesota
Space Science Center
School of Public Health
Minneapolis, Minnesota 55455

Wilmot Castle Company
Rochester, New York